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Boolean functions Fn
2 → F2 or F2n → F2

+ In both Error correcting coding and Symmetric cryptography,
Boolean functions are important objects !

Boolean functions

Symmetric Cryptosystems
(secret key)

Reed-Muller codes, etc.

Coding Theory Cryptography
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Boolean functions in Error Correcting Coding

Bn = {f : Fn
2 → F2}

The Reed-Muller code RM(r, n) can be defined in terms of Boolean
functions : RM(r, n) is the set of all n-variable Boolean functions Bn of
algebraic degrees at most r. More precisely, it is the linear code of all
binary words of length 2n corresponding in the truth-tables of these
functions.

For every 0 ≤ r ≤ n, the Reed-Muller code RM(r, n) of order r, is a
linear code :  2n︸︷︷︸

length

,

r∑
i=0

(
n
i

)
︸ ︷︷ ︸

dimension

, 2n−r︸︷︷︸
minimum distance
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Cryptographic framework for Boolean functions

Pseudo-random
generator with

a Boolean function

⊕
Ciphertext

Plaintext

Stream ciphers

Encrypting

operation
Key

x1 xn

· · ·

y1 ym

· · ·

Plaintext

Ciphertext
outputs of Boolean functions

(depending on the key) over x1, · · · , xn

Bloc ciphers (AES, DES, etc)
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Cryptographic framework for Boolean functions

The two models of pseudo-random generators with a Boolean function :
COMBINER MODEL :

mt : plain text
ct : cipher text
kt : key stream ⊕6

6

-

mt

ct

ktf

LFSR 1 -x(t)
1

LFSR 2 -x(t)
2

LFSR n -x(t)
n

...

LFSR : Linear Feedback Shift Register

• A Boolean function combines the outputs of several LFSR to produce
the key stream : a combining (Boolean) function f .
•The initial state of the LFSR’s depends on a secret key.
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Cryptographic framework for Boolean functions

FILTER MODEL :

si+L−1 · · · si+1 si

666

⊕⊕⊕
��

-

? ? ?

x1 xi xn

f (x1, x2, · · · , xn)

?
output : key stream

• A Boolean function takes as inputs several bits of a single LFSR to
produce the key stream : a filtering (Boolean) function f

+ To make the cryptanalysis very difficult to implement, we have to
pay attention when choosing the Boolean function, that has to
follow several recommendations : cryptographic criteria !
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Some main cryptographic criteria for Boolean functions

• CRITERION 1 : To protect the system against distinguishing attacks, the
cryptographic function must be balanced, that is, its Hamming weight is 2n−1.

• CRITERION 2 : The cryptographic function must have a high algebraic
degree to protect against the Berlekamp-Massey attack.

The Hamming distance dH(f , g) := #{x ∈ F2n | f (x) 6= g(x)}.
• CRITERION 3 : To protect the system against linear attacks and correlation
attacks, the Hamming distance from the cryptographic function to all affine
functions must be large.
• CRITERION 4 : To be resistant against correlation attacks on combining
registers, a combining function f must be m-resilient where m is as large as
possible.
Algebraic immunity of f : AI(f ) is the lowest degree of any nonzero function g
such that f · g = 0 or (1 + f ) · g = 0.
• CRITERION 5 : To be resistant against algebraic attacks, f must be of high
algebraic immunity that is, close to the maximum d n

2e. But this condition is not
sufficient because of Fast Algebraic Attacks (FFA) : cryptographic functions
should be resistant against FFA !
Some of these criteria are antagonistic ! Tradeoffs between all these
criteria must be found.
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The discrete Fourier (Walsh) Transform of Boolean functions

DEFINITION (THE DISCRETE WALSH TRANSFORM)

χ̂f (a) =
∑
x∈Fn

2

(−1)f (x)+a·x, a ∈ Fn
2

where "·" is the canonical scalar product in Fn
2 defined by

x · y =
∑n

i=1 xiyi,∀x = (x1, . . . , xn) ∈ Fn
2, ∀y = (y1, . . . , yn) ∈ Fn

2.

or

DEFINITION (THE DISCRETE WALSH TRANSFORM)

χ̂f (a) =
∑

x∈F2n

(−1)f (x)+Trn
1(ax), a ∈ F2n

where "Trn
1" is the absolute trace function on F2n .
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Cryptographic Boolean functions

Cryptographic parameters for Boolean and vectorial functions

Nonlinearity and higher-order nonlinearity

Correlation immunity and resiliency

Algebraic immunity and fast algebraic immunity

Boomerang uniformity

etc.

Interests are in four aspects :
1 Characterizations
2 Constructions
3 Classifications
4 Enumerations

Extension of the theory of cryptographic Boolean functions to :
1 Vectorial Boolean functions
2 Functions in odd characteristic
3 Generalized functions
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Bent functions

A much particular interest in :

Bent Boolean functions

Bent vectorial Boolean functions

Subclasses of bent Boolean functions : hyper-bent Boolean functions

Super classes of bent Boolean functions : plateaued Boolean functions

+ Book [SM, 2016] : Bent Functions - Fundamentals and Results. Springer
2016

+ Survey [Carlet-SM 2016] : Four decades of research on bent functions.
Des. Codes Cryptogr. 2016
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Boolean functions and codes

Reed-Muller codes

Minimal codes

LRC codes

LCD codes

etc.
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Approaches and tools used to solve problems in the Boolean world

Approaches : algebraic approach, combinatoric approach, asymptotic
approach and geometric approach.
Mathematical tools :

discrete Fourier/Walsh transforms

polynomials over finite fields (polynomials, Linearized polynomials,
permutation polynomials, involutions, Dickson polynomials, polynomials
e- to-1, etc)

functions over finite fields (symmetric functions, quadratic forms, etc)

tools from algebraic geometry (algebraic curves, elliptic curves,
hyper-elliptic curves, etc)

finite geometry (oval polynomials, hyperovals, etc)

linear algebra and group theory

tools from combinatorics

tools from arithmetic number theory
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A cryptographic parameter for Boolean functions : correlation immunity

DEFINITION

An n-variable Boolean function f is said to be correlation immune of
order k if any sub-function deduced from f by fixing at most k inputs is
balanced, equivalently,

χ̂f (v) = 0 for all v ∈ Fn
2 such that 1 ≤ wH(v) ≤ k

If f is moreover balanced then f is said to be resilient of order k.

A CRYPTOGRAPHIC CRITERION : a (combining) Boolean function
must be resilient of order m with m large.
A new application of correlation immune functions (not resilient) in
relation with block ciphers is with the counter-measure against
side channel attacks.
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A cryptographic parameter for Boolean functions : resilience

Estimating the number of Boolean functions satisfying one or more
cryptographic criteria is useful :

it indicates for which values of parameters there is a chance of
finding good cryptographic Boolean functions by random search.

a large number of Boolean functions is necessary if we want to
impose several constraints on the function.

+ Count the number of m-resilient n-variable Boolean functions
(seems to be an intractable open problem!)

NOTATION

. Resm
n : the set of all n-variable Boolean functions which are

m-resilient.
. #Resm

n : the cardinality of Resm
n .
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Known results for #Resm
n

The value of #Resm
n is known for m ≥ n− 3 [Camion et al 1991].

The value of #Res1
n is known for n ≤ 7 [Harary-Palmer 1973], [Le

Bars-Viola 2007].
Asymptotic estimation on #Resm

n [Canfield et al 2010].
Upper bounds : [Schneider 1990] (b1), [Carlet-Klapper 2002] (b2),
[Carlet-Gouget 2002] (b3) :

-

1 n
2 ? n− 3

m

b1 is better

than b2 and b3

b2 and b3 improve

upon b1

b2 ≥ b3 b3 ≥ b2
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Our approach for #Resm
n

We use the characterization of the resiliency by means of the
Numerical Normal Form (N.N.F) (representation of a Boolean function
as polynomial over Z).

DEFINITION (CARLET-GUILLOT 1999)
We call Numerical Normal Form (NNF) the representation of
pseudo-Boolean functions in R [x1, . . . , xn]/(x2

1 − x1, . . . , x2
n − xn).
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Our approach for #Resm
n

We use the characterization of the resiliency by means of the
Numerical Normal Form (N.N.F) (representation of a Boolean function
as polynomial over Z).

PROPOSITION (CARLET-GUILLOT 1999)

Let f : Fn
2 → {0, 1} Let g(x) = f (x)⊕ x1 ⊕ · · · ⊕ xn (viewed as an

integer-valued function). Then f is m-resilient if and only if,
degNNF(g) ≤ n− m− 1

1 We show that counting m-resilient n-variable Boolean functions is
equivalent to count the number of integer points in a particular
convex polytope.

2 We introduce a multivariate generating function whose one of its
coefficients is #Resm

n .
3 This derives us to interpret #Resm

n as a Taylor coefficient in the
series expansion of a multivariate partial fraction.
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Two representations formulas for #Resm
n

PROPOSITION (SM 2007)

#Resm
n is the coefficient of

∏
I⊆{1,...,n} z

b|I|+1
I in the series expansion of

∏
I⊆{1,...,n}

(1 + zI)
∏

#J≤n−m−1

1

1−
∏
I⊇J

zI

where

bi =

min(i,n−m−1)∑
j=1

(
i
j

)
2j−1, i ∈ {0, . . . , n}

PROPOSITION ([SM 2007])

#Resm
n =

1
(2iπ)2n

∫
· · ·
∫
γ⊂C

∏
I⊆{1,...,n}

1 + zI

zb#I+2
I

∏
#J≤n−m−1

1

1−
∏
I⊇J

zI

∏
I⊆{1,...,n}

dzI

where

bi =

min(i,n−m−1)∑
j=1

(
i
j

)
2j−1, i ∈ {0, . . . , n}

and E = {(zI) | ∀I ⊆ {1, . . . , n}, zI ∈ C, |zI| = εI}.
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Two representations formulas for #Resm
n

OPEN PROBLEM

Compute the value of #Resm
n for n > 7 or improve the known upper

bounds on #Resm
n .
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A cryptographic parameter for Boolean functions : nonlinearity

A CRYPTOGRAPHIC CRITERION : The distance of a cryptographic function to
all affine functions must be high to protect the system against linear attacks
and correlation attacks.

+ The nonlinearity of f is the minimum Hamming distance to affine
functions :

DEFINITION (NONLINEARITY)

f : F2n → F2 a Boolean function. The nonlinearity denoted by nl(f ) of f is

nl(f ) := min
l∈An

dH(f , l)

where An : is the set of affine functions over F2n .
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A cryptographic parameter for Boolean functions : the r th-order

nonlinearity

DEFINITION (r-TH-ORDER NONLINEARITY : nlr(f ) (r ∈ N, r ≤ n))

The r-th order nonlinearity of f is the minimum Hamming distance between f
and the set of all the n-variable Boolean functions of algebraic degree at most
r : nlr(f ) = min

g∈RM(r,n)
dH(f , g)

+ We were interested in :

for a given integer k, nlr(f ) of n-variable Boolean functions f with
algebraic immunity k.

the maximal value of nlr(f ) (r > 1) of n-variable Boolean functions f .
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A cryptographic parameter for Boolean functions : the r th-order

nonlinearity

In 2005 : [Lobanov 2005] provided a lower bound on the nlr(f ) :
nlr(f ) ≥ 2

∑k−r−1
i=0

(n−r
i

)
In 2006 : two lower bounds on nlr(f ) involving the algebraic
immunity ([Carlet 2006],[Carlet-Dalai-Gupta-Maitra 2006]). None
of them is better than the other one for all values of the algebraic
immunity.
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A cryptographic parameter for Boolean functions : the r th-order

nonlinearity

In 2008 : a new lower bound on the rth-order nonlinearity profile of
Boolean functions, given their algebraic immunity, that improves
significantly upon the known lower bounds [Carlet et al. 2006] for
all orders and upon the bound [Carlet 2006 ] for low orders :

THEOREM (SM 2008)
Let f be an n-variable Boolean function of algebraic immunity k and let
r be a positive integer strictly less than k. Then

nlr(f ) ≥
k−r−1∑

i=0

(
n
i

)
+

k−r−1∑
i=k−2r

(
n− r

i

)
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A cryptographic parameter for Boolean functions : the r th-order

nonlinearity

In 2010 : [Rizomiliotis 2010] gave precisions on the bounds,
involving the maximum between the minimal algebraic degree of
the nonzero annihilators of f and the minimal algebraic degree of
the nonzero annihilators of f⊕1.
In 2015 : [SM, McGrew, Davis, Steele, Marsten 2015] constructed
a family of Boolean functions where the first bound [Carlet
2006](the presumed weaker bound) is tight and the second bound
[Carlet et al. 2006] is strictly worse than the first bound. They
showed that the difference between the two bounds can be made
arbitrarily large.
In 2020 : [Carlet 2020] gave a very general proof of Lobanov
result.
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A cryptographic parameter for Boolean functions : the r th-order

nonlinearity

OPEN PROBLEM

Improve further the known lower bounds on the rth-order nonlinearity
profile of Boolean functions, given their algebraic immunity.
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Covering radius of the Reed-Muller code RM(r, n)

+ The maximal nonlinearity of order r of n-variable Boolean functions
coincides with the covering radius of RM(r, n).

DEFINITION (COVERING RADIUS OF THE REED-MULLER CODE RM(r, n))

Covering radius of the Reed-Muller code RM(r, n) of order r and length 2n :

•ρ(r, n) := max
f∈Bn

min
g∈RM(r,n)

dH(f , g) = max
f∈Bn

nlr(f )

where Bn := {f : Fn
2 → F2}. Or :

•ρ(r, n) := min{d ∈ N | ∪
x∈RM(r,n)

B(x, d) = Fn
2}

where B(x, d) := {y ∈ Fn
2 | dH(x, y) ≤ d}(Hamming ball)

+ The covering radius plays an important role in error correcting codes :
measures the maximum errors to be corrected in the context of
maximum-likelihood decoding.

• The best upper bound of ρ(r, n) (r > 1) before 2007 : [Cohen-Litsyn 1992].
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Covering radius of the Reed-Muller code RM(r, n)

[Carlet-SM 2007] Let r > 1. The covering radius of the Reed-Muller code of
order r satisfies
asymptotically :ρ(r, n) ≤ 2n−1 −

√
15
2 · (1 +

√
2)r−2 · 2n/2 + O(nr−2)

Our results have improved the best known upper bounds dating from 15
years ago. Up to now, our bounds are the best bounds known in the
literature.
Our results are obtained by induction on r thanks to improved upper bounds
on the covering radius ρ(2, n) :

THEOREM (CARLET-SM 2007)

For every positive integer n ≥ 17, the covering radius ρ(2, n) of the
second-order Reed-Muller code RM(2, n) is upper bounded by⌊

2n−1 −
√

15
2
· 2 n

2 ·
(

1− 122929
21 · 2n −

155582504573
4410 · 22n

)⌋
(1)
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Brief outline of the proof

Bn := {f : Fn
2 → F2}.

We prove an asymptotic upper bound on the covering radius ρ(2, n) of
the Reed-Muller code of order 2 :

ρ(2, n) ≤ 2n−1 −
√

15 2
n
2−1 + O(1).

Indeed, we have :

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2
min
f∈Bn

√
Sk+1(f )
Sk(f )

where

Sk(f ) =
∑

g∈RM(2,n)

∑
x∈Fn

2

(−1)f (x)+g(x)

2k

, f ∈ Bn, k ∈ N
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Brief outline of the proof

∀k ∈ N, ρ(2, n) ≤ 2n−1 − 1
2
min
f∈Bn

√
Sk+1(f )
Sk(f )

1 Decomposition of Sk(f ) into sums of characters :
Sk(f ) =

∑k
w=0 N(2w)

k M(2w)
f where M(2w)

f =
∑

g∈RM(n−3,n)
wt(g)=2w

(−1)〈f ,g〉

and N(2w)
k is an integer independent of f .

2 Lower bound of the sums of characters M(2w)
f thanks to the

characterization of the words of Reed-Muller codes given by
Kasami, Tokura and Azumi : ∀f ∈ Bn, M(2w)

f ≥ M(2w)
min .

3 Lower bound of Sk+1(f )
Sk(f )

, ∀f , leading to an upper bound

ρ(2, n) ≤ 2n−1 − 1
2

√
Smin

k+1
Smin

k
for k ≤ kn where kn varies according to

the value of n and Smin
k =

∑k
w=0 N(2w)

k M(2w)
min .
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Covering radius of the Reed-Muller code RM(r, n)

Remarks :

The greater we take the value of k, the better the upper bound obtained.

Our method could be applied directly to ρ(r, n) but the best result is
obtained with our method to ρ(2, n).

We were able to improve ρ(2, n) thanks to the characterization of those
elements of the RM(r, n) whose Hamming weights are < 2.5 dmin.

OPEN PROBLEM

Improve further the covering radius of the Reed-Muller code RM(2, n) by
getting a better estimation of the sums of characters M(2w)

f .
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The covering radius of RM(1, n) and bent functions

+ The Covering radius ρ(1, n) of the Reed-Muller code RM(1, n) coincides
with the maximum nonlinearity nl(f ).

+ General upper bound on the nonlinearity : nl(f ) ≤ 2n−1 − 2
n
2−1

When n is odd, ρ(1, n) < 2n−1 − 2
n
2−1

When n is even, ρ(1, n) = 2n−1 − 2
n
2−1 and the associated n-variable

Boolean functions are the bent functions.

DEFINITION (BENT FUNCTION [ROTHAUS 1976])

f : F2n → F2 (n even) is said to be a bent function if nl(f ) = 2n−1 − 2
n
2−1

A main characterization of bentness :

(f is bent) ⇐⇒ χ̂f (ω) = ±2
n
2 , ∀ω ∈ F2n

+ some classes of bent functions are known (Maiorana-Mc Farland’s class,
Spreads class PS−, PSap, Class H).
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Spread

DEFINITION (SPREAD)

A m-spread of F2n is a set of pairwise supplementary m-dimensional
subspaces of F2n whose union equals F2n

EXAMPLE (A CLASSICAL EXAMPLE OF m-SPREAD)

in F2n : {uF2m , u ∈ U} where U := {u ∈ F2n | u2m+1 = 1}

in F2n ≈ F2m × F2m : {Ea, a ∈ F2m} ∪ {E∞} where Ea := {(x, ax) ; x ∈ F2m}
and E∞ := {(0, y) ; y ∈ F2m} = {0} × F2m .

+ We were interested in bent functions g defined on F2m × F2m , whose
restrictions to elements of the m-spread {Ea,E∞} are linear.
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Class H

Functions g of the class H defined over F2m × F2m whose restrictions to
elements of the m-spread {Ea,E∞} are linear, are of the form (2)

g(x, y) =
{

Trm
1

(
xψ
( y

x

))
if x 6= 0

Trm
1 (µy) if x = 0 (2)

where ψ : F2m → F2m et µ ∈ F2m .

THEOREM (CARLET-SM 2010)

A function g of the class H si bent if and only if

G(z) := ψ(z) + µz is a permuation on F2m (3)

∀β ∈ F?2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . (4)

the condition (4) implies condition (3).

A function G from F2m to F2m satisfying (4) if and only if for all γ ∈ F2m , the

function Hγ : z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation over F2m .
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o-polynomes

DEFINITION

Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial if, for every γ ∈ F2m , the function Hγ :

z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation on F2m .

The notion of o-polynomial comes from Finite Projective Geometry :

+ There is a close connection between "o-polynomials" and "hyperovals" :

DEFINITION (A HYPEROVAL OF PG2(2n))

Denote by PG2(2n) the projective plane over F2n .
A hyperoval of PG2(2n) is a set of 2n + 2 points no three collinear.

A hyperoval of PG2(2n) can then be represented by
D(f ) = {(1, t, f (t)), t ∈ F2n} ∪ {(0, 1, 0), (0, 0, 1)} where f is an o-polynomial.

34 / 39



Class H, Niho bent functions and o-polynomial

Class H (bent functions in bivariate forms ; contains a class H introduced by
Dillon in 1974).

Class H Niho bent functions

o-polynomials

(1)
(2)

OPEN PROBLEM

Find new Niho bent functions and find new o-polynomials.
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Hyper-bent Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 01])

f : F2n → F2 (n even) is said to be a hyper-bent if the function x 7→ f (xi) is
bent, for every integer i co-prime to 2n − 1.

Characterization : f is hyper-bent on F2n if and only if its extended Hadamard
transform takes only the values ±2

n
2 .

DEFINITION (THE EXTENDED DISCRETE FOURIER (WALSH) TRANSFORM)

∀ω ∈ F2n , χ̂f (ω, k) =
∑

x∈F2n

(−1)f (x)+Trn
1(ωxk),with (k, 2n − 1) = 1.

Hyper-bent functions have properties stronger than bent functions ; they
are rarer than bent functions.

+ Hyper-bent functions are used in S-boxes (DES).

+ A new criterion [Canteaut-Rotella, 2016] given on filtered LFSRs has
revived the interest in hyper-bent functions.

+ New results on (generalized) hyper-bent functions [SM 2020].
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Characterizations of hyper-bent Boolean functions in polynomial forms

NOTATION

We denote by Dn the set of bent functions f defined on F2n by
f (x) =

∑
i Tro(di)

1 (aixdi) with ∀i, di ≡ 0 (mod 2m − 1) such that f (0) = 0.

All the known constructions of hyper-bentness are obtained for functions
in Dn.

In 2020, [SM-Mandal-Tang, 2020] provided new construction method
and characterizations of the hyper-bentness property.

OPEN PROBLEM

Find new hyper-bent functions outside the set Dn.
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Conclusions

An intensive work has been done on Boolean functions but many
interesting problems are still open.

An important reference in this topic is the extraordinary book of Claude
Carlet entitled "Boolean Functions for Cryptography and Coding Theory
" to appear in Cambridge Press.
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Book of Claude Carlet

Claude Carlet

BOOLEAN 
FUNCTIONS for 

CRYPTOGRAPHY 
and CODING 

THEORY
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