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Abstract

In the first part of the talk, we explain a method based on Bezout’s Theorem on the
intersection of two projective plane curves which can be used to analyse certain properties,
like nonlinearity, of quadratic functions on F2n , and apply the method to some classes of
quadratic functions.

With the objective to find nontrivial examples of functions on F2n , n = 2m, with the
maximal possible number 2n−2m of bent components, Pott et al. (2018) showed that for the
quadratic function F(x) = x2

r

Trnm(x) on F2n , the component function Fγ(x) = Trn1 (γF(x)),
is bent if and only if γ ∈ F2n \ F2m . Mesnager et al. showed more general the same result
for F(x) = x2

r

Trnm(Λ(x)) under some conditions (which we will simplify) on a linearized
polynomial Λ ∈ F2m [x].

In the second part of this talk, for the associated vectorial bent functions F (x) =
Trnm(γx2

r

Trnm(Λ(x))), which are quadratic Maiorana-McFarland bent functions, we precisely
describe the collection of the solution spaces of DaF (x) = F (x) + F (x + a) + F (a), which
forms a spread of F2n . Analysing properties of several of those spreads, one arrives at neat
conditions for H(x) = (F (x), G(x)) to have small differential uniformity. This also yields
further candidates for APN functions in a nice representation. We point to an application
of Bezout’s Theorem in this connection.

1 Introduction

Many examples for some interesting classes of vectorial Boolean functions, like APN functions,
are quadratic. One reason may be that quadratic functions permit several methods for their
analysis, hence are easier to investigate. In this talk, we explain a method based on Bezout’s The-
orem on the intersection of two projective plane curves to analyse some properties of quadratic
functions, which we introduced in [1] to determine the nonlinearity spectrum of Taniguchi’s
APN function.

In [4], it is shown that a function on F2n , n = 2m, can have at most 2n−2m bent components.
Note that every vectorial bent function from F2n to F2m seen as a function on F2n trivially
achieves this bound. Quadratic examples that are not obviously of this form, are presented in
the papers [3, 4], namely F(x) = x2

r
Trnm(Λ(x)), some conditions on a linearized polynomial Λ

imposed, see Section 3.
Though different functions of the form x2

r
Trnm(Λ(x)) are in general inequivalent, the associ-

ated vectorial bent functions F (x) = Trnm(x2
r
Trnm(Λ(x))) are, as one can observe, all quadratic

Maiorana-McFarland bent functions. In the first part of this talk we analyse the set of solution
spaces of DaF (x) = F (x) + F (x + a) + F (a) for our vectorial bent functions F , which all give
spreads of F2n (a property which is an EA-equivalence invariant for vectorial bent functions). We
remark that if r = 0 and Λ(x) = x, then F is equivalent to x2

r+1, and as pointed out in [2], one
obtains the standard representation of the Desarguesian spread. The properties of this represen-
tation of the spread (in bivariate form) are used in the constructions of Carlet’s, the Zhou-Pott
and Taniguchi’s APN-function. Analysing properties of (representations of) the spreads for
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other F , we get different neat conditions on G : F2n → F2m such that H(x) = (F (x), G(x)) has
a small differential uniformity. This can serve as tool to obtain various inequivalent classes of
differentially k-uniform functions in a simple representation.

We then present results on the differential uniformity of functions H(x) = (F (x), G(x)) from
F2n → F2m × F2m , and point to an application of Bezout’s points in the intersection in this
connection.

2 Application of Bezout’s Theorem

Let Xi be two projective curves over F̄2 without common components of degree di, where F̄2 is
the algebraic closure of F2, and P be a point on Xi for i = 1, 2, i.e., P ∈ X1∩X2. We denote the
multiplicity of P ∈ Xi by mP (Xi) for i = 1, 2 and the intersection multiplicity of P ∈ X1 ∩ X2

by I(P,X1 ∩ X2). It is well-known fact that X1 and X2 intersect at P with multiplicity

I(P,X1 ∩ X2) ≥ mP (X1)mP (X1) (1)

and equality holds if and only if X1 and X2 have no common tangent lines at P . Then Bezout’s
Theorem states that

∑

P∈X1∩X2

I(P,X1 ∩ X2) = d1d2 . (2)

In particular, by Bezout’s theorem, we conclude that X1 and X2 intersect at most d1d2 distinct
points.

Let H be a function on F2n for n = 2m. By identifying F2n to F2m × F2m , we can consider
H as a bivariate function. In particular, we can see Carlet’s, the Zhou-Pott and Taniguchi’s
functions H(x) = (F (x), G(x)) : F2n → F2m ×F2m as a function H(X,Y ) = (F (X,Y ), G(X,Y ))
on F2m × F2m . Note that any directional derivative of the component function Hλ,µ of H
corresponding to (λ, µ) ∈ F2m × F2m is linear as H is a quadratic function. Therefore, to
determine the Walsh spectrum of H, it is enough to determine the dimensions of the solution
spaces Λλ,µ consisting of (u, v) ∈ F2m × F2m such that

Trm (λ(F (X + u, Y + v) + F (X,Y ) + F (u, v)) + µ(G(X + u, Y + v) +G(X,Y ) +G(u, v))) = 0
(3)

for all (X,Y ) ∈ F2m × F2m . By using the fact that Trm(ux2
k
) = Trm(u2

i−k
x2

i
) we observe that

Equation (3) is equivalent to

Trm

(
A(u, v)X2l +B(u, v)Y 2j

)
= 0

for some linearized polynomials A(U, V ), B(U, V ) ∈ F2m(U, V ) of degree 22i, where i is an integer
related to the degree of H with gcd(i,m) = 1. That is, Λλ,µ = {(u, v) ∈ F2m × F2m | A(u, v) =
B(u, v) = 0}. Then the fact gcd(i,m) = 1 implies that the dimension of Λλ,µ over F2 is the same
as the dimension of Λ̃λ,µ over F2i , where Λ̃λ,µ = {(u, v) ∈ F2mi × F2mi | A(u, v) = B(u, v) = 0}.
Let X1 and X2 be the curves defined by the affine equations A(U, V ) and B(U, V ), respectively.
We observe that Xi has a unique point Pi at infinity for i = 1, 2 such that P1 6= P2. Note
that this implies that X1 and X2 have no common components. Otherwise, they would have an
intersection point at infinity. Then Bezout’s theorem implies that |Λ̃λ,µ| ≤ 24i as X1 and X2

intersect at most 24i distinct affine points. In particular, we conclude that dimF2(Λλ,µ) ≤ 4. We
suppose that they intersect at exactly 24i distinct affine points, i.e., the corresponding component
function is 4-plateaued. In this case, we construct curves Y1 and Y2 of degrees 22i+1 and 22i+ 1,
respectively, satisfying the following properties.

(i) If P ∈ X1 ∩ X2, then P ∈ Y1 ∩ Y2. In particular, Y1 and Y2 have 24i distinct affine
intersection points.
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(ii) If P ∈ X1 ∩ X2, then mP (Y1) ≥ 2.

(iii) Y1 and Y2 intersect at infinity, say Q, with mQ(Y1) = 22i and mQ(Y2) = 22i + 1 with a
common tangent line.

Then by Equations (1) and (2), we arrive a contradiction. That is, dimF2(Λλ,µ) ≤ 2, which gives
the following result, see [1].

Theorem 2.1 Carlet’s, the Zhou-Pott and Taniguchi’s APN-functions have classical spectrum.

3 The Solution Spaces of DaF (x) = F (x) + F (x + a) + F (a)

In [4], it is shown that the function Fγ(x) = Trn1 (γx2
r
Trnm(x)), r ≥ 0, is bent if and only if

γ ∈ F2n \ F2m . Hence F(x) = x2
r
Trnm(x) is an example of a function with maximal possible

number of bent components, which is “nontrivial” if r > 0. If r = 0, then F is equivalent to
x2

m+1, which actually maps F2n into F2m and as pointed out in [2], is essentially the Maiorana-
McFarland bent function xy in univariate representation.

In [3], where also two open problems of [4] are solved, it is shown that if for some αj ∈ F2m ,

1 ≤ j ≤ σ, both A1 =
∑σ

j=1 α
2m−tj

j z2
m−tj−1 + 1 = 0 and A2 =

∑σ
j=1 α

2m−r

j z2
tj−1 + 1 = 0 do not

have a solution in F2m , then the function Fγ : F2n → F2 given as

Fγ(x) = Trn


γx2r(Trnm(x) +

σ∑

j=1

αjTrnm(x2
tj

))


 , (4)

is bent if and only if γ 6∈ F2m .
We first refine the observation in [3] on the above function by showing a simpler (and also

necessary) condition.

Proposition 3.1 Let r ≥ 0 be an integer and Λ(x) = x+
∑σ

j=1 αjx
2tj ∈ F2m [x]. The function

F : F2n → F2m given as
F (x) = Trnm(γx2

r
Trnm(Λ(x))) (5)

is a vectorial bent function for all γ ∈ F2n \ F2m if and only if Λ is a permutation of F2m.

Our objective is now to describe the collection of the solution spaces for the vectorial bent
functions in (5). We arrive at the following result.

Proposition 3.2 Let Λ be a linear permutation of F2m, and let F : F2n → F2m be the vectorial
bent function in (5).

(i) For every z ∈ F2m, Uz = {x ∈ F2n |Trnm(γx2
r
) + zTrnm(Λ(x)) = 0} is an m-dimensional

subspace of F2n. The subspaces Uz, z ∈ F2m, together with F2m form a spread of F2n.

(ii) For a ∈ F∗2m we have F (x) + F (x+ a) + F (a) = 0 if and only if x ∈ F2m, and the solution
space of F (x) + F (x+ a) + F (a) is Uz if and only if a ∈ Uz.

Clearly, H : F2n → F2m × F2m with H(x) = (F (x), G(x)) and G quadratic, is differentially
k-uniform if and only if G is differentially k-uniform on F2m and G restricted to the linear space
Uz is differentially k-uniform for all z ∈ F2m . We remark that the set of our solution spaces of
DaF for F being a spread, results in the smallest possible number of restrictions of this form
on G. As remarked (see [2]), for r = 0, Λ(x) = x we get the standard representation of the
Desarguesian spread, i.e., the collection of the multiplicative cosets of F2m (0 added for each
space). For gcd(r,m) < m we can also infer nice properties of some other flavour: Let α ∈ Uz,
z 6= 0, then for every c ∈ F∗2m , the element cα lies in Uc2r−1z. In particular, if gcd(r,m) = 1,
then for z 6= 0 we have Uz = cU1 for some c ∈ F∗2m (depending on z). For some classes of G we
conclude the following conditions involving only 3 spread elements.
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Theorem 3.3 Let G : F2n → F2m be a quadratic function such that for every nonzero c ∈ F2m

we have G(cα) = K(c)G(α) for some nonzero constant K(c) ∈ F2m (depending on c) and every
α ∈ F2n. If gcd(r,m) = 1, then H(x) = (Trnm(γx2

r
Trnm(x)), G(x)) is differentially k-uniform if

and only if

(i) G is differentially k-uniform on F2m,

(ii) the function from U0 to F2m given by G(x) +G(x+ a) is k-to-1 for every nonzero a ∈ U0,

(iii) the function from U1 to F2m given by G(x) +G(x+ a) is k-to-1 for every nonzero a ∈ U1.

We remark that every monomial G(x) = Trnm(βx2
i+1), and G(x) = Trnm(ηx2

i+1 + δx2
m+i+1)

(suggested in [2]) for r = 0) satisfies G(cα) = K(c)G(α), c ∈ F∗2m . Therefore, our next aim is to
investigate both the differential uniformity and the Walsh spectrum of H for these functions by
using Theorem 3.3 and Bezout’s Theorem.

We note that U1 = {x ∈ F2n |x + γx2
r ∈ F2m}. As {1, γ, γ2r+1} is linearly dependent over

F2m and γ ∈ F2n \ F2m , there exist a1, a0 ∈ F2m such that γ2
r+1 + a1γ + a0 = 0. Let c ∈ F2m

such that c2
r

= a1. We define ψ(T ) := T + (γ + c)T 2r and show that ψ : F2m 7→ U1 is an
isomorphism. Hence we can state Conditions (i) and (iii) in Theorem 3.3 together in a neater
way as follows:
(i′) G and G ◦ ψ are differentially k-uniform on F2m .

In the rest of the talk we consider H(x) = (F (x), G(x)) for functions G(x) = Trnm(βx2
r+1)

and G(x) = Trnm(ηx2
r+1 + δx2

m+r+1), i.e., r = i. By above discussion, to decide differential
uniformity of H, it is sufficient to examine the solution space of

(i′) G(x+ a) +G(x) +G(a) = 0 in a ∈ F2m (resp., U0) for a ∈ F∗2m (resp., a ∈ U0) and

(ii′) G(ψ(x) + ψ(a)) +G(ψ(x)) +G(ψ(a)) = 0 in a ∈ F2m for a ∈ F∗2m .

By straightforward calculations, we show that G(x + a) + G(x) + G(a) = 0 has exactly 2
solutions in F2m for a ∈ F∗2m , and in U0 for a ∈ U0 if β, βν2

r+1 6∈ F2m for the first function,
where ν2

r
= γ−1. Similarly, it has exact two solutions if η + δ, ην2

r+1 + δν(2
r+1)2m 6∈ F2m

for the second one. Moreover, G(ψ(x) + ψ(a)) + G(ψ(x)) + G(ψ(a)) = 0 in F2m has at most
4 solutions for a ∈ F∗2m . For the proof of the second argument we use Bezout’s Theorem
different than the one given in Section 2. By setting X := x and Y := x2

r
, we can consider the

solution space of G(ψ(x) + ψ(a)) +G(ψ(x)) +G(ψ(a)) = 0 as the intersection of two curves X1

and X2 of degree 2r such that each solution corresponds to an intersection point. We observe
that Xi has a unique point at infinity Pi for i = 1, 2 such that P1 6= P2. In other words,
X1 and X2 are curves having no common components. Then Bezout’s Theorem implies that
G(ψ(x) + ψ(a)) + G(ψ(x)) + G(ψ(a)) = 0 has at most 22r solutions in F2mr , which implies the
existence of at most 4 solutions in F2m . That is, we obtain the following result.

Theorem 3.4 Let G(x) = Trnm(βx2
r+1) or G(x) = Trnm(ηx2

r+1 + δx2
m+r+1) and ν2

r
= γ−1.

If gcd(r,m) = 1 and β, βν2
r+1 6∈ F2m or η + δ, ην2

r+1 + δν(2
r+1)2m 6∈ F2m, then H(x) =

(Trnm(γx2
r
Trnm(x)), G(x)) is differentially at most 4-uniform.

Moreover, by similar calculations in Section 2, we can show that components functions are at
most 4-plateaued. In particular, we see that any component function is bent or semibent if
n ≡ 2 mod 4. That is, we have the following result.

Corollary 3.5 If n ≡ 2 mod 4, then any APN function in Theorem 3.4 have classical spectrum.

Our future work is to show the existence of elements η, δ ∈ F2n giving low differential uniformity
and high non-linearity as given in Theorem 2. Magma Calculation shows that there are many
APN functions of these forms. Therefore, another aim is to find the conditions on these elements
for which we obtain an infinite class of APN functions.
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Differentially low uniform permutations from the Gold and the

Bracken-Leander functions

Marco Calderini

Department of Informatics, University of Bergen, Norway

Abstract

Functions with low differential uniformity can be used in block ciphers as S-boxes since
they have good resistance to differential attacks. In this extended abstract, we give two con-
structions of differentially 6-uniform permutations over F22m by modifying the Gold function
and the Bracken-Leander function on a subfield.

1 Introduction

Let n be a positive integer, we will denote by F2n the finite field with 2n elements and its
multiplicative group by F?

2n . Permutation maps defined over F2n are used as S-boxes of some
symmetric cryptosystems. So, it is important to construct permutations with good cryptographic
properties in order to design a cipher that can resist to the known attacks. In particular, among
these properties we have a low differential uniformity for preventing differential attacks [1], high
nonlinearity for avoiding linear cryptanalysis [6] and also high algebraic degree to resist to higher
order differential attacks [5].

The best differential uniformity of a function F defined over F2n is 2. Functions achieving this
value are called almost perfect nonlinear (APN). For odd values of n there are known families
of APN permutations; while for n even there exists only one example of APN permutation over
F26 [2] and the existence of more ones remains an open problem. For ease of implementation,
usually, the integer n is required to be even in a cryptosystem. Therefore, finding permutations
with good cryptographic properties over F2n with n even is an interesting research topic for
providing more choices for the S-boxes.

The construction of low differentially uniform permutations with the highest nonlinearity
over F2n (with n even) is a difficult task. In Table 1 we give 5 families of primarily constructed
differentially 4-uniform permutations with the best known nonlinearity.

In the last years, many constructions of differentially 4-uniform permutations have been
found by modifying the inverse function on some subsets of F2n (see for instance [7, 8, 9, 10, 11]).
In particular, in [7, 10, 11] the authors change the inverse function on some subfields of F2n .

Table 1: Primarily-constructed differentially 4-uniform over F2n

Name F(x) deg Conditions

Gold x2
i+1 2 n = 2k, k odd gcd(i, n) = 2

Kasami x2
2i−2i+1 i+1 n = 2k, k odd gcd(i, n) = 2

Inverse x2
n−2 n− 1 n = 2k, k ≥ 1

Bracken-Leander x2
2k+2k+1 3 n = 4k, k odd

n = 3m, m even, m/2 odd,

Bracken-Tan-Tan ζx2
i+1 + ζ2

m
x2
−m+2m+i

2 gcd(n, i) = 2, 3|m+ i

and ζ is a primitive element of F2n
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In this abstract, we investigate the piecewise construction as in [7, 10, 11] by modifying the
image of the Gold and Bracken-Leander function on some subfields of F2n . We show that in these
cases it is possible to obtain permutations with differential uniformity at most 6. Moreover, if
we modify these functions using the inverse function (or a function equivalent to it), then we
can obtain permutations with algebraic degree n − 1 (which is the highest possible) and high
nonlinearity. These results extend those given in [12], where the authors modified the 4-uniform
Gold function for constructing differentially 6-uniform permutations.

2 Preliminaries

Any function F from F2n to itself can be represented as a univariate polynomial of degree at
most 2n − 1, that is

F (x) =
2n−1∑

i=0

aix
i.

The 2-weight of an integer 0 ≤ i ≤ 2n−1, denoted by w2(i), is the (Hamming) weight of its binary
representation. The algebraic degree of a function F is given by deg(F ) = max{w2(i) | ai 6= 0}.
Functions of algebraic degree 1 are called affine. Linear functions are affine functions with
constant term equal to zero and they can be represented as L(x) =

∑n−1
i=0 aix

2i . For any
permutation F it is well known that deg(F ) ≤ n− 1.

For any m ≥ 1 such that m|n we can define the (linear) trace function from F2n to F2m by

Trnm(x) =
∑n/m−1

i=0 x2
im
. When m = 1 we will denote Trn1 (x) by Tr.

For any function F : F2n → F2n we denote the Walsh transform in a, b ∈ F2n by

WF (a, b) =
∑

x∈F2n

(−1)Tr(ax+bF (x)).

The nonlinearity of a vectorial Boolean function F is given by

NL(F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F?
2n

|WF (a, b)|.

When n is odd, it has been proved that NL(F ) ≤ 2n−1 − 2
n−1
2 ; for n even, the best known

nonlinearity is 2n−1 − 2
n
2 , and it is conjectured that NL(F ) ≤ 2n−1 − 2

n
2 .

Definition 2.1 For a function F from F2n to itself, and any a ∈ F?
2n and b ∈ F2n, we denote

by δF (a, b) the number of solutions of the equation F (x+ a) + F (x) = b. The maximum value δ
among the δF (a, b)’s is called the differential uniformity of F , and F is said to be differentially
δ-uniform.

There are several equivalence relations of functions for which the differential uniformity and
the nonlinearity are preserved. Two functions F and F ′ from F2n to itself are called:

• affine equivalent if F ′ = A1 ◦ F ◦ A2 where the mappings A1, A2 : F2n → F2n are affine
permutations;

• extended affine equivalent (EA-equivalent) if F ′ = F ′′+A, where the mappings A : F2n →
F2n is affine and F ′′ is affine equivalent to F ;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation L of
F2n × F2n the image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ , where
GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

Obviously, affine equivalence is included in the EA-equivalence, and it is also well known
that EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZ-
equivalent to its inverse [4]. The algebraic degree is invariant for the affine equivalence and also
for the EA-equivalence for nonlinear functions, but not for the CCZ-equivalence (and inverse
transformation).
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3 Constructing differentially 6-uniform permutations

In this section we will study the piecewise construction for the case of Gold and the Bracken-
Leander function. We refer to the full version of the paper [3] for more details on the proofs of
the results given in this section.

The following lemma give a characterisation for the solutions of (x + 1)2
k+1 + x2

k+1 = b,
when b belongs to some specific subfield F2s of F2n .

Lemma 3.1 Let n = sm with s even and m odd. Let k be such that gcd(k, n) = 2. For any
b ∈ F2s the equation

x2
k

+ x = b

does not admit any solution x in F2n \ F2s.

Proof: See [3]. �

Theorem 3.2 Let n = sm with s even such that s/2 is odd and m odd. Let k be such that
gcd(k, n) = 2 and f be at most differentially 6-uniform permutation over F2s. Then

F (x) = f(x) + (f(x) + x2
k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n.

Proof: Using the Lemma 3.1 it is possible to analyse the solutions of the equation

F (x) + F (x+ a) = b,

distinguishing the cases where: both x and x + a are in F2s ; one is in F2s and the other not;
none is contained in F2s . See [3] for a detailed proof. �

Also for the Bracken-Leander function we can characterize the solutions of the equation
(x+ 1)2

2k+2k+1 + x2
2k+2k+1 = b, when b is in some specific subfield.

Lemma 3.3 Let n = 4k = sm with k and m odd. For any b ∈ F2s the equation

x2
2k+2k + x2

2k+1 + x2
k+1 + x2

2k
+ x2

k
+ x = b (1)

does not admit any solution x in F2n \ F2s.

Proof: See [3]. �
Similarly to Theorem 3.2 we obtain:

Theorem 3.4 Let n = 4k = sm, with k, m odd and s even. Let f be at most differentially
6-uniform permutation over F2s. Then

F (x) = f(x) + (f(x) + x2
2k+2k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
2k+2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n.

From Theorem 3.2 and Theorem 3.2 we obtain a general construction for functions with
differential uniformity at most 6. In the following, we will show that using a function f equivalent
to the inverse function we can obtain a permutation of degree n− 1 with high nonlinearity.

We, first, give the following result, which is a necessary and sufficient condition for a permu-
tation to have maximal degree.

Lemma 3.5 Let F be a function defined over F2n. Then, F in its polynomial representation
has a term of algebraic degree n− 1 if and only if there exists a linear monomial x2

j
such that∑

x∈F2n
F (x)x2

j 6= 0. In particular, if F is a permutation then deg(F ) = n− 1.

9



Proof: See [3]. �

Corollary 3.6 Let n = sm with s even such that s/2 is odd and m. Let k be such that
gcd(k, n) = 2 and f(x) = A1 ◦ Inv ◦ A2(x), where Inv(x) = x−1 and A1, A2 are affine per-
mutations over F2s. Then

F (x) = f(x) + (f(x) + x2
k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n. Moreover, if s > 2 then the algebraic degree
of F is n− 1.

Proof: We need to prove only that the degree of F is n−1. From Lemma 3.5, since deg(f(x)) =
s− 1 there exists h(x) = x2

j
in F2s [x] (with j ≤ s− 1) such that

∑
x∈F2s

f(x)h(x) 6= 0.

Thus, since deg(x2
k+1) = 2 < s− 1 we obtain

∑

x∈F2n

F (x)h(x) =
∑

x∈F2s

f(x)h(x) +
∑

x∈F2n

x2
k+1h(x) +

∑

x∈F2s

x2
k+1h(x) =

∑

x∈F2s

f(x)h(x) 6= 0.

Then, deg(F ) = n− 1 since F is a permutation. �

Similarly we have the following construction using the Bracken-Leander function.

Corollary 3.7 Let n = 4k = sm with k, m odd and s even. Let f(x) = A1 ◦ Inv ◦A2(x), where
Inv(x) = x−1 and A1, A2 are affine permutations over F2s. Then

F (x) = f(x) + (f(x) + x2
2k+2k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
2k+2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n. Moreover, if s > 4 then deg(F ) = n− 1.

Remark 3.8 When s = 2 and G(x) = x2
k+1 or s = 4 and G(x) = x2

2k+2k+1 we have deg(G) =
s − 1. Thus, we could obtain a permutation of degree less than n − 1 in Corollary 3.6 and
Corollary 3.7.

For the nonlinearity of the constructed functions we have the following.

Proposition 3.9 The nonlinearity of the functions in Corollary 3.6 and Corollary 3.7 is at
least 2n−1 − 2

n
2 − 2

s
2
+1.

Proof: See [3]. �
It is well known that the algebraic degree is not preserved by the CCZ-equivalence and in

particular by the inverse transformation. However, for any permutation of maximal algebraic
degree we have the following easy observation.

Proposition 3.10 Let F be a permutation defined over F2n. Then, deg(F ) = n− 1 if and only
if deg(F−1) = n− 1.

Proof: Suppose deg(F ) = n−1 and let h(x) a linear monomial for which we have
∑

x∈F2n
F (x)h(x) 6=

0. Since F is a permutation we obtain
∑

x∈F2n
F (x)h(x) =

∑
x∈F2n

xh(F−1(x)), which implies

deg(h ◦ F−1) = n− 1. Since h is linear we have that deg(F−1) = n− 1. �

From this result we have that also the compositional inverses of the functions given in
Corollary 3.6 and Corollary 3.7 are differentially 6-uniform functions with high nonlinearity and
algebraic degree n− 1.
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Denoting by ω = ζ
2n−1

3 the primitive element of F4, in Table 2 and Table 3 we give the
CCZ-inequivalent functions that can be obtained by Corollary 3.6 for n = 6, 10 considering
f(x) = A ◦ Inv.

Table 2: CCZ-inequivalent permu-
tations from Corollary 3.6 over F26

A(x) deg N`(G) Bound on N` δ

x 2 24 20 4

x+ ω 4 20 20 6

ωx2 + ω 5 20 20 6

ωx 5 22 20 6

ω2x2 + ω 5 22 20 6

Table 3: CCZ-inequivalent permu-
tations from Corollary 3.6 over F210

A(x) deg N`(G) Bound on N` δ

x 2 480 476 4

x+ ω 8 476 476 6

ωx2 + ω 9 476 476 6

ωx 9 478 476 6

ω2x2 + ω 9 478 476 6

In Table 4 we report some permutations constructed from Corollary 3.7 for n = 12 (in this
case s = 4 and m = 3). As before, we consider f(x) = A ◦ Inv with A affine permutations
defined over F4[x] (for A(x) = x2 we obtain the Bracken-Leander function).

Table 4: CCZ-inequivalent permutations from Corollary 3.7 over F212

A(x) deg N`(G) Bound on N` δ

x2 3 1984 1976 4

x2 + 1 8 1976 1976 6

ω2x2 + ω 11 1976 1976 6

x+ ω 11 1978 1976 6

ωx2 11 1980 1976 6
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Abstract

We defined recently [3] a new (output) multiplicative differential, and the corresponding
c-differential uniformity, which is first characterized via a convolution of Walsh transforms.
With this new differential concept, even for characteristic 2, there are perfect c-nonlinear
(PcN) functions. We looked at some of the known classes of perfect nonlinear (PN) functions
and show that only one remains a PcN function, under a different condition on the param-
eters. Surprisingly, the p-ary Gold PN function increases its c-differential uniformity signif-
icantly, under some conditions on the parameters. We then characterize the c-differential
uniformity of the inverse function (in any dimension and characteristic).

Let F2n be the finite field with 2n elements. We call a function from F2n to F2 a Boolean
function on n variables and denote the set of all such functions by Bn. For a Boolean function
f : F2n → F2 we define the Walsh-Hadamard transform to be the integer valued function

Wf (u) =
∑

x∈F2n

(−1)f(x)+Trn1 (ux),

where Trn1 : F2n → F2 is the absolute trace function, Trn1 (x) =
∑n−1

i=0 x
2i .

An (n,m)-function (often called a vectorial Boolean function if there is no need to explicitly
specify the dimensions n and m) is a map F : Fn

2 → Fm
2 . When m = n, it can be represented as

a univariate polynomial over F2n (using the natural identification of the finite field F2n with the
vector space Fn

2 ) of the form F (x) =
∑2n−1

i=0 aix
i, ai ∈ F2n . The algebraic degree of the function

is then the largest Hamming weight of an exponent i, with ai 6= 0. For an (n,m)-function F ,
we define the Walsh transform WF (a, b) to be the Walsh-Hadamard transform of its component
function Trm1 (bF (x)) at a, that is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n : F (x+a)+F (x) = b}|.
We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential uniformity of F .
If ∆F = δ, then we say that F is differentially δ-uniform. If δ = 2, then F is an almost perfect
nonlinear (APN) function.

At the Fast Software Encryption (FSE 2002) conference, N. Borisov, M. Chew, R. Johnson,
D. Wagner used a new type of differential that is quite useful for the cryptanalysis of ciphers
that utilize modular multiplication as a primitive operation. It is an extension of a type of
differential cryptanalysis and it was used to cryptanalyse some existing ciphers (like a variant
of the well-known IDEA cipher).
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Inspired by the previously mentioned successful attempt, we started a theoretical analysis
of an (output) multiplicative differential. Given a p-ary (n,m)-function F : Fpn → Fpm , and
c ∈ Fpm , the (multiplicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn .

(Note that, if c = 1, then we obtain the usual derivative, and, if c = 0 or a = 0, then we obtain
a shift of the function.) For an (n, n)-function F , and a, b ∈ Fpn , we let c∆F (a, b) = #{x ∈ Fpn :
F (x+ a)− cF (x) = b}. We call the quantity

c∆F = max {c∆F (a, b) : a, b ∈ Fpn , and a 6= 0 if c = 1}

(surely, including a = 0 for the case c 6= 1, the equation F (x) − cF (x) = b is of course,
F (x) = b(1 − c)−1, so we are looking here at how close F is to a permutation polynomial, and
similarly in the case c = 0 for any a) the c-differential uniformity of F . If c∆F = δ, then we
say that F is differentially (c, δ)-uniform. If δ = 1, then F is called a perfect c-nonlinear (PcN)
function (certainly, for c = 1, they only exist for odd characteristic p; however, one wonders
whether they can exist for p = 2 for c 6= 1, and we shall argue later that that is actually true). If
δ = 2, then F is called an almost perfect c-nonlinear (APcN) function. It is easy to see that if F
is an (n, n)-function, that is, F : Fpn → Fpn , then F is PcN if and only if cDaF is a permutation
polynomial.

In the work [3] we first characterized the c-differential uniformity of a function via a gener-
alized convolution of Walsh transforms. As particular examples, we show that if m,n are fixed
positive integers and c ∈ Fpm , c 6= 1, F is an (n,m)-function, then

∑

u∈Fpn

v∈Fpm

|WF (u, v)|2|WF (u, cv)|2 ≥ p3n+m,

with equality if and only if F is a perfect c-nonlinear (PcN) function; Furthermore, we have

∑

u1,u2∈Fpn

v1,v2∈Fpm

WF (u1 + u2, v1 + v2)WF (u1 + u2, c(v1 + v2))

· WF (u1, v1)WF (u2, v2)WF (u1, cv1)WF (u2, cv2)

≥ 3 · pm+n
∑

u∈Fpn

v∈Fpm

|WF (u, v)|2|WF (u, cv)|2 − 2 · p2(2n+m),

with equality if and only if F is an almost perfect c-nonlinear (APcN).
We then proceeded to investigate some of the known perfect nonlinear functions. We there-

fore show the following major theorem [3].

Theorem 1 Let F : Fpn → Fpn be the monomial F (x) = xd, and c 6= 1 be fixed. The following
statements hold:

(i) If d = 2, then F is APcN, for all c 6= 1.

(ii) If d = pk + 1, p > 2, then F is not PcN, for all c 6= 1. Moreover, when (1 − c)pk−1 = 1
and n/gcd (n, k) is even, the c-differential uniformity c∆F ≥ pg + 1, where g = gcd(n, k).

(iii) Let p = 3. If d =
3k + 1

2
, then F is PcN, for c = −1 if and only if

n

gcd(n, k)
is odd.

(iv) If p = 3 and F (x) = x10 − ux6 − u2x2, the c-differential uniformity of F is c∆F ≥ 2.

We then looked at the inverse function, which is APN for n odd and has differential uniformity
4 for n even and show the next two theorems [3].
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Theorem 2 Let n be a positive integer, 1 6= c ∈ F2n and F : F2n → F2n be the inverse function
defined by F (x) = x2

n−2. We have:

(i) If c = 0, then F is PcN (that is, F is a permutation polynomial).

(ii) If c 6= 0 and Trn(c) = Trn(1/c) = 1, the c-differential uniformity of F is 2 (and hence F
is APcN).

(iii) If c 6= 0 and Trn(1/c) = 0, or Trn(c) = 0, the c-differential uniformity of F is 3.

Theorem 3 Let p be an odd prime, n ≥ 1 be a positive integer, 1 6= c ∈ Fpn and F : Fpn → Fpn

be the inverse p-ary function defined by F (x) = xp
n−2. We have:

(i) If c = 0, then F is PcN (that is, F is a permutation polynomial).

(ii) If c 6= 0, 4, 4−1, (c2 − 4c) ∈ (Fpn)2, or (1− 4c) ∈ (Fpn)2, the c-differential uniformity of F
is 3.

(iii) If c = 4, 4−1, the c-differential uniformity of F is 2 (and hence F is APcN).

(iv) If c 6= 0, (c2 − 4c) /∈ (Fpn)2 and (1 − 4c) /∈ (Fpn)2, the c-differential uniformity of F is 2
(and hence F is APcN).

The computational data on c-differential uniformity presented in [3] on the Gold and Kasami
cases prompted more investigation and a first step was taken in [5] with a complete description
of the Gold case, as well as an investigation of some of the APN entries from the Helleseth-
Rong-Sandberg table [4].

It would be quite interesting to continue with some of the other entries in the table [4],
Dobbertin et al. [2] further examples, or even newer PN or APN classes of functions, through
the prism of the newly defined c-differentials concept we introduced in [3].
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Abstract

Finding permutation polynomials with low di↵erential uniformity is an important topic in S-
box designs of many block ciphers. For example, AES chooses the di↵erentially 4-uniform inverse
function as its S-box. This inverse function has good cryptographic properties with high algebraic
degree and nonlinearity. Therefore, many variants of the inverse function has been researched
( [5,6,8–10]). In this paper, we characterize the di↵erential uniformity of a permutation polynomial
having low Carlitz rank. We show that permutation of low Carlitz rank is a�ne equivalent to
cycle or composition of cycle and the inverse function. As a result, we give a classification of the
di↵erential uniformity of the permutation polynomials of Carlitz rank at most 4 and we present
new classes of di↵erentially 4-uniform permutation polynomials.

1 Introduction

A Boolean function of n variables is a function f : F2n �! F2 and an vectorial boolean function
((n, m)-function or S-box) is a function F : F2n �! F2n where F2n is denoted by finite field with
2n elements. For a given function F : F2n �! F2n , the di↵erence distribution table, denoting
DDTF , whose entries are given as

DDTF (a, b) = #{x 2 F2n : F (x) + F (x + a) = b},

where #A denotes the cardinality of a set A. The function F is di↵erential �-uniform if �F  �
where

�F = max
a2F2n\{0}, b2F2n

DDT(a, b),

and �F is called di↵erential uniformity of F . It is clear that the smallest value of �F is 2 and
such function is called Almost perfect nonlinear (APN) function. APN permutations play a
important role in designing S-box. But finding an APN permutation is very di�cult, so finding
di↵erential 4-uniform permutation has been studied actively. ( [5, 6, 8–10])

Now we introduce the Carlitz rank of permutation. We let denote [a0, a1, . . . , am] continued
fraction

a0 + (a1 + (a2 + · · · (am�1 + a2n�2
m ) · · · )2n�2)2

n�2

1
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where ai 2 F2n . We identify x2n�2 with x�1 over F2n by defining as 0�1 = 0. It is known that for
any permutation F : F2n �! F2n , there is m � 0 and ai 2 F2n , 0  i  m such that

F (x) = [am+1, am, . . . , a2, a1 + a0x]

= (· · · ((a0x + a1)
�1 + a2)

�1 · · · + am)�1 + am+1,
(1)

where a0, a2, · · · , am 6= 0( [4]). For a given F , the above expression is not unique in general. However
there is the least m among all possible expressions of F . The Carlitz rank of F is the least integer
m satisfying the above expression. Suppose that a permutation F : F2n ! F2n has Carlitz rank  m.
Then one may write F as the form of Eq.(1). For given F and 0  k  m, we define

Fk(x) = [ak+1, ak, . . . , a2, a1 + a0x]

= (· · · ((a0x + a1)
�1 + a2)

�1 · · · + ak)
�1 + ak+1

Then one has F0(x) = a0x+a1, F1(x) = (a0x+a1)
2n�2 +a2, · · · , Fm = F . Also we inductively define

Rk(x) for 0  k  m as follows

Rk(x) =
↵k+1x + �k+1

↵kx + �k
, (2)

where
↵k+1 = ak+1↵k + ↵k�1, �k+1 = ak+1�k + �k�1 (1  k  m)

with the initial conditions ↵0 = 0,↵1 = a0 and �0 = 1,�1 = a1. Then it is known [4] that

Rk(x) = Fk(x) for all x 62 Ok

✓
Ok =

⇢
xi =

�i

↵i
: i = 1, . . . , k

�
,Ok ⇢ F2n [ {1}

◆

where xi
0s are called poles of Fk and xi = 1 if and only if ↵i = 0.

2 Carlitz rank and inverse function

Two functions F : F2n �! F2n and F 0 : F2n �! F2n are called a�ne equivalent if there exist a�ne
permutations A1, A2 satisfying F 0 = A1 � F � A2. ( for details, see [1–3]) It is well-known that two
a�ne equivalent functions have same di↵erential uniformity.

Lemma 2.1. A permutation F : F2n ! F2n with Carlitz rank  m is a�ne equivalent to inverse
function Inv with at most m exceptional points. That is, there is a subset U ⇢ F2n with #U  m
and a�ne permutations `1, `2 : F2n ! F2n satisfying `2 � F � `1(x) = 1

x for all x 62 U .

As a consequence of the above result, cryptographic properties of a permutation of low Carlitz
rank are closely related with those of inverse function modified at some small set of points. In
subsequent sections, we discuss cryptographic properties of a permutation of low Carlitz rank.

3 Di↵erential uniformity

Before finding the di↵erential uniformity of F (x) = [am+1, am, . . . , a2, a1 + a0x] on F2n , we can set
a0 = 1, a1 = 0, a2 = 1 without loss of generality by the follwing proposition.

2
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Proposition 3.1. Let F (x) = [am+1, am, . . . , a2, a1 + a0x] on F2n where a0, a2, · · · , am 6= 0.
(i) If m = 1 then F is a�ne equivalent to G, given by G(x) = x�1 on F2n.
(ii) If m � 2 then F is a�ne equivalent to G, given by

G(x) = [0, �m, . . . , �1, x] = (· · · ((x2n�2 + �1)
2n�2 + �2)

2n�2 · · · + �m)2
n�2

where �1 = 1 and �i = a
(�1)i

2 ai+1 for i � 2.

From now on we set
F (x) = [0, am, . . . , a3, 1, x], (3)

Now we denote
Ai = [0, 1, a3, · · · , ai] for 1  i  m, (4)

i.e. A1 = [0], A2 = [0, 1], A3 = [0, 1, a3], · · · , Am = [0, 1, a3, . . . , am], and

A0
u = [0, 1, a3, . . . , am, u]. (5)

Then we have the following lemma:

Lemma 3.2. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Then

DDTF (a, b) = DDTF�1(b, a) = #{u 2 F2n : A0
u + A0

u+b = a}.

For given a, b 2 F2n \ {0}, we now define 4 partitions of {u 2 F2n : A0
u + A0

u+b = a}, denoted by
P (a, b), as follows :

PA(a, b) = P (a, b) \ {u 2 F2n : 9 1  i, j  m A0
u = Ai, A0

u+b = Aj}
PB(a, b) = P (a, b) \ {u 2 F2n : @ 1  i  m A0

u = Ai, 9 1  j  m A0
u+b = Aj}

PB0(a, b) = P (a, b) \ {u 2 F2n : 9 1  i  m A0
u = Ai, @ 1  j  m A0

u+b = Aj}
PC(a, b) = P (a, b) \ {u 2 F2n : @ 1  i, j  m A0

u = Ai, A0
u+b = Aj}

(6)

It is clear that

DDTF (a, b) = #P (a, b) = #PA(a, b) + #PB(a, b) + #PB0(a, b) + #PC(a, b).

Moreover we have #PB(a, b) = #PB0(a, b), so

DDTF (a, b) = #P (a, b) = #PA(a, b) + 2#PB(a, b) + #PC(a, b).

We now use the notation
ui = [0, am, am�1, . . . , ai+1],

which is the root of [0, 1, a3, . . . , am, u] = [0, 1, . . . , ai], i.e A0
u = Ai. The following theorem implies

how PA(a, b), PB(a, b) and PC(a, b) are constructed.

Theorem 3.3. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Let U = {ui : 1  i  m}
of cardinality m0 and we have 1  i1 < i2 < · · · < im0  m such that U = {ui1 , ui2 , . . . , uim0}. Then
the followings are satisfied:

3
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(i) #PA(a, b) =

(
2 if (a, b) 2 {(Aij + Aik , uij + uik) : 1  j < k  m0}
0 otherwise

(ii) #PB(a, b) = #

⇢
1  j  m0 : b + uij =

(a + Aij )↵m�1 + �m�1

(a + Aij )↵m + �m
, b + uij /2 U

�

(iii) If ↵m 6= 0 then #PC(a, b) =

(
0 if Tr( 1

ab↵2
m

) = 1 or p(u) = 0 for some u 2 U

2 otherwise
; and

If ↵m = 0 then #PC(a, b) =

(
2n � 2m0 + #{(j, k) : uij + uik = b} if b = a↵2

m�1

0 otherwise.

where p(u) = a↵2
mu2 + ab↵2

mu + ab↵m↵m�1 + a↵2
m�1 + b.

By using the previous thoerem, we get the upper or lower bound of the di↵erential uniformity of
F .

Corollary 3.4. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Let m0 = #{Ai : 1 
i  m}. Then the followings are satisfied :

(i) If ↵m 6= 0 then �F  2m0 + 4.

(ii) If ↵m = 0 then �F � 2n � 2m0 + 2.

3.1 Carlitz rank of 3

Throughout this section, let F (x) = [0, c, 1, x] on F2n , which is obtained by setting m = 3 and a3 = c
in (3). Note that in case c = 1, we can easily show that �F = 2n. Now we consider c 6= 1 case, then
we obtain the coe�cients given by Table 1.

Table 1: The coe�cients related with F (x) = [0, c, 1, x] on F2n with c 6= 1.

i 0 1 2 3

↵i 0 1 1 c + 1

�i 1 0 1 c

Ai 0 1 c
c+1

ui
1

c+1
1
c 0

Then by theorem 3.3 and Table 1 with U = {u1, u2, u3} = { 1
c+1 , 1

c , 0}, we have

4
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(i) #PA(a, b) =

(
2 if (a, b) 2 {(1, 1

c(c+1)), (
1

c+1 , 1
c ), (

c
c+1 , 1

c+1)}
0 otherwise

(ii) #PB(a, b) =

8
>>>><
>>>>:

3 if (a, b) 2 C1 := B1 \ B2 \ B3

2 if (a, b) 2 C2 := ((B1 \ B2) [ (B2 \ B3) [ (B3 \ B1)) \ C1

1 if (a, b) 2 C3 := (B1 [ B2 [ B3) \ (C1 [ C2)

0 otherwise

(iii) #PC(a, b) =

(
0 if Tr( 1

ab(c2+1)
) = 1, b = a

(c+1)a+1 or b = a
(c2+c)a+c2

2 otherwise

(7)

where B1 = {(a, b) : b = 1
(c2+1)a+c2+c

, (a, b) 6= (1, 1
c+1), (0, 1

c2+c
), ( c

c+1 , 0)}, B2 = {(a, b) : b =

a+1
(c2+c)a+c

, (a, b) 6= (0, 1
c ), (1, 0)} and B3 = {(a, b) : b = (c+1)a+1

(c2+1)a
, (a, b) 6= (0, 1

c+1), ( 1
c+1 , 0)}.

The next lemma makes it easier to find (a, b) which makes DDTF (a, b) maximum.

Lemma 3.5. In (7) with F (x) = [0, c, 1, x] on F2n with n � 3 and c 6= 1, the followings are satisfied:
(i) �F � 4.
(ii) c 62 F4 \ F2 if and only if #PA(a, b)#PB(a, b) = 0 for all a, b 2 F2n \ {0}, in other words neither
#PA(a, b) nor #PB(a, b) can be positive for all a, b 2 F2n \ {0}.
(iii) Let us assume that c 62 F4 \ F2. Then

�F = max
(a,b)2B0

DDTF (a, b)

where B0 = {(a, b) : #PB(a, b) = max
a,b

#PB(a, b)}.

By using this lemma, we can induce the following proposition and theorem.

Proposition 3.6. Let F (x) = [0, c, 1, x] on F2n with c 6= 1. Then the followings are satisfied :
(i) If c3 + c2 + 1 = 0 then �F = 8.

(ii) If c 2 F4 \ F2 then �F =

(
6 if n ⌘ 0 (mod 4)

4 if n ⌘ 2 (mod 4)
.

Proof. (Sketch of (i)) We first consider c3 + c2 + 1 = 0 case. If c3 + c2 + 1 = 0 then we get for

B1 \ B2 \ B3 = {(
1

c2 + c
, 1)}.

It is obvious that c 62 F4, so �F = DDTF ( 1
c2+c

, 1) by lemma 3.5. Hence we obtain �F = DDTF ( 1
c2+c

, 1) =

6 + #PC( 1
c2+c

, 1) = 8.

Theorem 3.7. Let F (x) = [0, c, 1, x] on F2n with c 62 F4 and c3 + c2 + 1 6= 0. Then �F  6 and the
followings are satisifed:

(i) If Tr( c
c+1) = Tr(1

c ) = 1 then �F = 4.

5
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(ii) If Tr( c
c+1) = 1, Tr(1

c ) = 0 then, letting �2 + � = 1
c with � 2 F2n,

– If n is odd then Tr( 1
� ) = Tr( 1

�+1) = 0 if and only if �F = 4.

– If n is even then Tr( 1
� ) = Tr( 1

�+1) = 1 if and only if �F = 4.

(iii) If Tr( c
c+1) = 0, Tr(1

c ) = 1 then, letting �2 + � = 1
c+1 with � 2 F2n,

it holds that Tr( 1
� ) = Tr( 1

�+1) = 1 if and only if �F = 4.

(iv) If Tr( c
c+1) = Tr(1

c ) = 0 then, �2 + � = 1
c and �2 + � = 1

c+1 with �, � 2 F2n,

– If n is odd then Tr( 1
� ) = Tr( 1

�+1) = 0 and Tr( 1
� ) = Tr( 1

�+1) = 1 if and only if �F = 4.

– If n is even then Tr( 1
� ) = Tr( 1

�+1) = Tr( 1
� ) = Tr( 1

�+1) = 1 if and only if �F = 4.

Proof. (Sketch) Since c 62 F4 and c3 + c2 + 1 6= 0, max
a,b

#PB(a, b)  2, so �F  6 by lemma 3.5.

We now consider claim (i). The assumption implies that B1 \B2 = B2 \B3 = B3 \B1 = �, so that
#PB(a, b)  1. By lemma 3.5-(i), (iii), we have �F = 4.

We next consider the claim (ii). The assumption implies that B1 \ B2 = B2 \ B3 = � and

B3 \ B1 = {(a, b) : b = (c+1)a+1
(c2+1)a

, a2 + c
c+1a + c

c2+1
= 0}, so we get

B0 = {( c
c+1�, c�+1

(c2+c)�
), ( c

c+1(� + 1), c(�+1)+1
(c2+c)(�+1)

)} = {( �
�2+�+1

, �3+�2

�2+�+1
), ( �+1

�2+�+1
, �3+�
�2+�+1

)}.

where �2 + � = 1
c . For (a, b) = ( �

�2+�+1
, �+1
�2+�+1

) 2 B0, we get

#PC(a, b) =

(
2 if Tr(�+1

� ) = 0

0 if Tr(�+1
� ) = 1

by (7). For (a, b) = ( �+1
�2+�+1

, �3+�
�2+�+1

) 2 B0, Therefore

#PC(a, b) =

(
2 if Tr( �

�+1) = 0

0 if Tr( �
�+1) = 1.

by (7). Since �F = max(a,b)2B0 DDTF (a, b) by lemma 3.5, �F = 4 if and only if Tr(�+1
� ) = 1 and

Tr( �
�+1) = 1. Note that Tr(1) = 0 if and only if n is even, so we get the claim (ii). The claim (iii)

and (iv) is simlar to the proof of claim (ii).

Note that Theorem 3.7-(i) has been constructed in [5] but the others are new classes of di↵eren-
tially 4-uniform permutation polynomials.

3.2 Special case on Carlitz rank of 4

Throughout this section, let F (x) = [0, d, 1, 1, x] on F2n , which is obtained by setting m = 4, a3 = 1
and a4 = d in (3). Similarly to the proof of Carlitz rank 3, we get the following theorem.

Theorem 3.8. Let F (x) = [0, d, 1, 1, x] on F2n with d 62 F4. Then �F = 4 or �F = 6. Moreover we
get:
(i) If n is odd then �F = 4.
(ii) If n is even then Tr( 1

d+1) = Tr(1
d) = 1 if and only if �F = 4.

Note that Theorem 3.8-(ii) has been constructed in [5] but the other is new class of di↵erentially
4-uniform permutation polynomials.

6
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4 Conclusion

In this paper, we presented a methodology for calculating di↵erential uniformity for low carlitz rank.
As a result we found the bound of di↵erential uniformity, so it was confirmed that the low carlitz
rank guarantees a rather low di↵erential uniformity.

We also gave a partial classification of the di↵erential uniformity of the permutation polynomials
of Carlitz rank at most 4. As a result, new classes of di↵erentially 4-uniform permutations have been
discovered. Since the permutation polynomials of low Carlitz rank are a�ne equivalent to inverse
function except on a small subset in F2n , and since the other cryptographic properties of the inverse
function are well known, we can also find the other cryptographic invariants such as nonlinearity and
Walsh spectrum of permutation polynomials with low Carlitz rank in a similar manner.
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Abstract

Properties of a secondary bent function construction, that inverts values of a given bent
function on an affine subspace, are obtained. Some results regarding normal and weakly
normal bent functions are generalized. Bent functions and their dual functions are considered
in the construction context.

1 Preliminaries

Let us recall some definitions. A bent function is a Boolean function in even number of variables
that is at the maximal possible Hamming distance from the set of all affine Boolean functions.
Bent functions were introduced by O. Rothaus [1]. Additional information regarding them can
be found in [2, 3]. Let 〈x, y〉 = x1y1 ⊕ . . . ⊕ xnyn, where x, y ∈ Fn2 . Let us denote by IndS the
characteristic function of a set S ⊆ Fn2 and by Dαf(x) = f(x) ⊕ f(x ⊕ α) the derivative of a
Boolean function f in the direction α. For x ∈ Fn2 and k ≤ n, let us define

Projk(x) = (x1, . . . , xk),

P rojk(S) = {Projk(x) | x ∈ S},
Elemk(S) = {x ∈ Fk2 | (x, 0, . . . , 0︸ ︷︷ ︸

n−k

) ∈ S}.

Hereinafter we suppose that n is even. By Bn we denote the set of all bent functions in n
variables, by f̃ the dual bent function of f ∈ Bn.

In this work, we consider properties of a bent function construction

f ⊕ IndU ,

where f ∈ Bn is a given bent function and U is an affine subspace of an arbitrary dimen-
sion. Necessary and sufficient conditions for f ⊕ IndU to be a bent function were proven by
C. Carlet [4].

Theorem 1.1 (C. Carlet, 1994) Let f ∈ Bn, L ⊆ Fn2 be a linear subspace and a ∈ Fn2 . Then

f ⊕ Inda⊕L is a bent function if and only if any of the following equivalent conditions hold:

• Dαf is balanced on a⊕ L for all α ∈ Fn2 \ L;

• f̃(x)⊕ 〈a, x〉 is either constant or balanced on each coset of L⊥.

We will use the second condition. The next two sections describe properties of a dual bent
function f̃ .
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2 A balanced representation

Let us introduce the following notion.

Definition 2.1 A Boolean function f in n variables has a balanced representation by a linear
subspace L ⊆ Fn2 if f is either constant or balanced on each coset of L.

Note that any function has a balanced representation by the 0-dimensional linear subspace
(“either constant or balanced” case allows us to ignore its odd cardinality). The same situation
holds for a 1-dimensional linear subspace.

First of all, there are some additional details regarding balanced representations of bent
functions.

Theorem 2.2 Let f ∈ Bn and L be a linear subspace, dimL ≤ n/2. Then

• f has a balanced representation by L if and only if f is constant on each of some 2n−2 dimL

distinct cosets of L;

• f can not be constant on more than 2n−2 dimL distinct cosets of L.

Note that the case dimL = n/2 is especially interesting for bent functions. A large class of
normal bent functions for this representation was introduced by H. Dobbertin [5].

3 A balanced representation of iterative constructed functions

Let us consider the simplest iterative construction of a bent function f+2 by f ∈ Bn:

f+2(x1, . . . , xn+2) = f(x1, . . . , xn)⊕ xn+1xn+2.

Recall that f+2 ∈ Bn+2 if and only if f ∈ Bn. Also, it holds

f̃+2(x1, . . . , xn+2) = f̃(x1, . . . , xn)⊕ xn+1xn+2.

The question is the following: whether the balanced representations for f and f+2 are con-
nected or not.

Proposition 3.1 Let f ∈ Bn have a balanced representation by L ⊆ Fn2 . Then the bent function
f+2 has balanced representations by

• L0 = {(x, 0, 0) | x ∈ L}, i. e. dimL0 = dimL;

• L1 = {(x, y, 0) | x ∈ L, y ∈ F2}, i. e. dimL1 = dimL+ 1.

Moreover, there is a “feedback” from the f+2 to f .

Theorem 3.2 Let f ∈ Bn and suppose that f+2 have a balanced representation by a linear
subspace L ⊆ Fn+2

2 . Then there exists a linear subspace L′ ⊆ Fn2 with

dimL− 1 ≤ dimL′ ≤ dimL

such that f has a balanced representation by L′. Moreover, it holds

Elemn(L) ⊆ L′ ⊆ Projn(L).

In case dimL = n/2 + 1 Theorem 3.2 can be easily transformed to “f is normal if and only if
f+2 is normal” that was proven in [6]. I. e. it is a generalization of weakly normal and normal
bent function properties.
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4 Subspaces for iterative constructed functions

Using Theorem 1.1, the results of Section 3 can be generalized to the construction properties.

Proposition 4.1 Let f ∈ Bn and f ⊕ IndU ∈ Bn, where U is an affine subspace of Fn2 . Then
for the bent function f+2 the following statements hold:

• f+2 ⊕ IndU1 ∈ Bn+2, where U1 = {(x, y, 0) | x ∈ U, y ∈ F2}, i. e. dimU1 = dimU + 1;

• f+2 ⊕ IndU2 ∈ Bn+2, where U2 = {(x, y, z) | x ∈ U, y, z ∈ F2}, i. e. dimU2 = dimU + 2.

Theorem 4.2 Let f+2 ∈ Bn+2 and f+2⊕ Inda⊕L ∈ Bn+2, where L ⊆ Fn+2
2 is a linear subspace,

a ∈ Fn+2
2 . Then there exists a linear subspace L′ ⊆ Fn2 with

dimL− 2 ≤ dimL′ ≤ dimL− 1

such that f ⊕ IndProjn(a)⊕L′ ∈ Bn. Moreover, it holds

Elemn(L) ⊆ L′ ⊆ Projn(L).

Similarly to Theorem 3.2, in case dimL = n/2 + 1, Theorem 4.2 can be reformulated in terms
of weakly normal bent function properties.

Trivial subspace dimensions for f ∈ Bn are n (just negation of the function) and n− 1 (ad-
dition of an affine function). We can naturally exclude these dimensions from the construction.

Computational experiments (see Section 5) show that for the non-weakly normal bent func-
tion f10 ∈ B10 found in [7] (Fact 14) the following fact holds.

Fact 4.3 For any affine subspace U ⊆ F10
2 , dimU ≤ 8, it holds that f10 ⊕ IndU /∈ B10.

Corollary 4.4 For any n ≥ 10, there exists a bent function f ∈ Bn such that f ⊕ IndU /∈ Bn
for any affine subspace U ⊆ Fn2 of dimension at most n/2 + 3.

5 Search subspaces

For a given f ∈ Bn, the algorithm described in [6] can help to construct all affine subspaces
U ⊆ Fn2 (of an arbitrary dimension) such that f ⊕ IndU ∈ Bn. Though it constructs affine
subspaces such that f is affine on each of them, it “sorts” cosets for a convenient usage in a
balanced representation.

The algorithm complexity can be calculated in the following way:

n

n/2∑

m=1

(
|Lm(f̃)|+ (2m − 2)|L0

m(f̃)|
)

+O(n2n),

where Lm(f) (L0
m(f)) is the set of an m-dimensional affine subspaces such that f is affine

(constant) on them.

6 Count of the constructed functions

For f ∈ Bn and 0 ≤ m ≤ n, we define

Constrm(f) = {f ⊕ IndU | U is an m-dimensional affine subspace of Fn2} ∩ Bn.

Theorem 6.1 Let f ∈ Bn and f⊕IndU ∈ Bn, where U is an affine subspace of Fn2 of dimension
at most n/2 + 1. Then

supp{f̃ ⊕ ˜(f ⊕ IndU )}
is an affine subspace too.
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Corollary 6.2 |Constrm(f)| = |Constrm(f̃)| for m ≤ n/2 + 1.

Unlike n/2 and n/2 + 1 dimensions, for other cases we have

• supp{f̃ ⊕ ˜(f ⊕ IndU )} may not be an affine subspace;

• |Constrm(f)| and |Constrm(f̃)| may not be equal; such bent functions in 8 variables exist,
for instance, in Maiorana–McFarland class [8].

Thus, for an arbitrary subspace dimensions, some construction properties differ from the case
m = n/2.

It is well known that |Constrm(f)| = 0 for m < n/2. The following theorem estimates
cardinalities of all other Constrm(f).

Theorem 6.3 For f ∈ Bn and m ≥ n/2, it holds

|Constrm(f)| ≤ 2n−m
n−m∏

i=1

22m+2i−n − 1

2i − 1
.

Moreover, for m ≤ n− 2, the bound is reached if and only if f is quadratic.

This estimate generalizes the bound from [9] for the case m = n/2.
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Abstract

Bent functions of the form Fn
2 → Zq (K.-U Schmidt, 2006) are known as generalized bent

(gbent) functions. In this paper we study self-dual generalized bent functions and some their
metrical properties for the Hamming and Lee distance. Necessary and sufficient conditions
for self-duality of Maiorana–McFarland gbent functions are given. We find the complete
Hamming and Lee distance spectrums between self-dual Maiorana–McFarland gbent func-
tions and, as a corollary, we obtain minimal distances between considered self-dual gbent
functions. We prove that the set of quaternary self-dual gbent functions is metrically regular
for the Lee distance. The mapping of the set of all generalized Boolean functions in n vari-
ables to itself is called isometric if it preserves the distance between any pair of functions.
We consider the mappings obtained by a generalization of isometric mappings of the set
of all Boolean functions in n variables to itself. Within this generalization we propose an
isometric mapping that preserves both Hamming and Lee distances and transforms the set
of (anti-)self-dual gbent functions to itself.

Let Fn2 be a set of binary vectors of length n. For x, y ∈ Fn2 denote 〈x, y〉 =
n⊕
i=1

xiyi, where

the sign ⊕ denotes a sum modulo 2.
A generalized Boolean function f in n variables is any map from Fn2 to Zq, the integers

modulo q. The set of generalized Boolean functions in n variables is denoted by GFqn, for the
Boolean case (q = 2) we use the notation Fn. Let ω = e2πi/q. A sign function of f ∈ GFqn is a
complex valued function ωf , we will also refer to it as to a complex vector

(
ωf0 , ωf1 , ..., ωf2n−1

)

of length 2n, where (f0, f1, ..., f2n−1) is a vector of values of the function f .
The Hamming weight wtH(x) of the vector x ∈ Fn2 is the number of nonzero coordinates of

x. The Hamming distance distH(f, g) between generalized Boolean functions f, g in n variables
is the cardinality of the set {x ∈ Fn2 |f(x) 6= g(x)}. The Lee weight of the element x ∈ Zq
is wtL(x) = min {x, q − x}. The Lee distance distL(f, g) between f, g ∈ GFqn is

distL(f, g) =
∑

x∈Fn
2

wtL (δ(x)) ,

where δ ∈ GFqn and δ(x) = f(x) + (q − 1)g(x) for any x ∈ Fn2 . For Boolean case q = 2 the
Hamming distance coincides with the Lee distance.

The (generalized) Walsh–Hadamard transform of f ∈ GFqn is the complex-valued function:

Hf (y) =
∑

x∈Fn
2

ωf(x)(−1)〈x,y〉.

A generalized Boolean function f in n variables is said to be generalized bent (gbent) if

|Hf (y)| = 2n/2,

*The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics
(project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research (project no. 18-07-01394,
20-31-70043) and Laboratory of Cryptography JetBrains Research.
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for all y ∈ Fn2 [9]. If there exists such f̃ ∈ GFqn that Hf (y) = ωf̃(y)2n/2 for any y ∈ Fn2 , the

gbent function f is said to be regular and f̃ is called its dual. Note that f̃ is generalized bent as
well. A regular gbent function f in said to be self-dual if f = f̃ , and anti-self-dual if f = f̃ + q

2 .
Consequently, it is the case only for even q. So throughout this paper we assume that q is a
natural even number.

A survey on different generalizations of bent functions can be found in [12].
Denote, according to [3], the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) |LLT = In

}
,

where LT denotes the transpose of L and In is an identical matrix of order n over the field F2.
Bent functions in 2k variables which have a representation

f(x, y) = 〈x, π(y)〉 ⊕ g(y),

where x, y ∈ Fk2, π : Fk2 → Fk2 is a permutation and g is a Boolean function in k variables, form
the well known Maiorana–McFarland class of bent functions. It is known [1] that a dual of a
Maiorana–McFarland bent function f(x, y) is equal to

f̃(x, y) = 〈π−1(x), y〉 ⊕ g
(
π−1(x)

)
.

A generalization of this construction for the case q = 4 was given by Schmidt in [9]. In [11]
this construction was given for any even q, thus, forming the following construction

f(x, y) =
q

2
〈x, π(y)〉+ g(y),

where x, y ∈ Fk2, π : Fk2 → Fk2 is a permutation and g is a generalized Boolean function in k
variables. Its dual is

f̃(x, y) =
q

2
〈π−1(x), y〉+ g

(
π−1(x)

)
.

In the article [2] necessary and sufficient conditions of (anti-)self-duality of Maiorana–McFarland
bent functions, were given. In [10] quaternary self-dual Maiorana–McFarland bent functions were
studied and necessary and sufficient conditions of self-duality were obtained for them.

In the current work we generalize these results for any even q. Denote the sets of self-dual
and anti-self-dual generalized Maiorana–McFarland bent functions by SB+

GMq(n) (SB−GMq(n)).

For the Boolean case (q = 2) we will use the notation SB+
M(n) (SB−M(n)).

Theorem 0.1 A generalized Maiorana–McFarland bent function

f(x, y) =
q

2
〈x, π(y)〉+ g(y), x, y ∈ Fn/22 ,

is (anti-)self-dual bent if and only if for any y ∈ Fn/22

π(y) = L (y ⊕ b) , g(y) =
q

2
〈b, y〉+ d,

where L ∈ On/2, b ∈ Fn/22 , wt (b) is even (odd), d ∈ Zq.

It follows that the number of such functions is a function of q and the cardinality of the
orthogonal group.

Corollary 0.2 It holds

∣∣SB+
GMq(n)

∣∣ =
∣∣SB−GMq(n)

∣∣ = q · 2n/2−1
∣∣On/2

∣∣ .
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In paper [4] the possible Hamming distances between (anti-)self-dual Maiorana–McFarland
bent functions for the Boolean case were studied and the complete Hamming distances spectrum
was presented, namely it was shown that for f, g ∈ SB+

M(n) ∪ SB−M(n), then

dist(f, g) ∈
{

2n−1, 2n−1
(

1± 1

2r

)
, r = 0, 1, ..., n/2− 1

}
.

Moreover, it was shown that if either f, g ∈ SB+
M(n) or f, g ∈ SB−M(n), then all distances given

above are attainable. If f is self-dual bent and g is anti-self-dual bent, then dist(f, g) = 2n−1.
In the current work we generalize this result for any even q in both Hamming and Lee dis-

tances. Denote the mentioned spectrum for the Hamming distance by SpH
(
SB+
GMq(n) ∪ SB−GMq(n)

)
,

while for the Lee distance the notation SpL
(
SB+
GMq(n) ∪ SB−GMq(n)

)
is used. The Hamming

distance spectrum is described by the following

Theorem 0.3 It holds

SpH
(
SB+
GMq(n) ∪ SB−GMq(n)

)
=
{

2n−1
}
∪
n/2−1⋃

r=0

{
2n−1

(
1± 1

2r

)}
.

Moreover, all given distances are attainable.

The Lee distance spectrum is characterized by

Theorem 0.4 It holds

SpL
(
SB+
GMq(n) ∪ SB−GMq(n)

)
=
{
q · 2n−2

}
∪

q/2⋃

w=0

n/2−1⋃

r=0

{
q · 2n−2

(
1± 1

2r

)
∓ w · 2n−r

}
.

Moreover, all given distances are attainable.

It is possible to derive the minimal distances from these spectrums.

Proposition 0.5 The minimal Lee distance between generalized (anti-)self-dual Maiorana–McFarland
bent functions in n variables is equal to 2n−3q, while the minimal Hamming distance is 2n−2.

Recall that RMq (r,m) is the length 2m linear code over Zq that is generated by the monomials
of order at most r in variables x1, x2, ..., xm, its minimal Lee distance is equal to 2m−r [8]. Hence
for RMq (2,m) minimal Lee distance is equal to 2n−2. From the obtained results it follows that

Corollary 0.6 The minimal Lee distance 2n−2 between quadratic (generalized) bent functions
is attainable on (anti-)self-dual Maiorana–McFarland bent functions from GMq

n only for q = 2
while the minimal Hamming distance 2n−2 is attainable on such functions for any even q > 2.

Let X ⊆ Znq be an arbitrary set and let y ∈ Znq be an arbitrary vector. Define the distance
between y and X as dist(y,X) = min

x∈X
dist(y, x). The maximal distance from the set X is

d(X) = max
y∈Zn

q

dist(y,X).

In coding theory this number is also known as the covering radius of the set X. A vector
z ∈ Znq is called maximally distant from the set X if dist(z,X) = d(X). The set of all maximally
distant vectors from the set X is called the metrical complement of the set X and denoted by

X̂. A set X is said to be metrically regular if
̂̂
X = X. A subset of Boolean functions is said to

be metrically regular if the set of corresponding vectors of values is metrically regular [13].
In paper [5] it was proved that the set of Boolean self-dual bent functions is metrically regular

within the Hamming distance. In current work we prove that within Lee distance this statement
holds for the quaternary case q = 4 as well.
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Theorem 0.7 The sets of (anti-)self-dual generalized quaternary bent functions are metrically
regular for the Lee distance.

A mapping ϕ of the set of all (generalized) Boolean functions in n variables to itself is called
isometric if it preserves the distance between functions, that is,

dist(ϕ(f), ϕ(g)) = dist(f, g)

for any f, g ∈ GFn. From Markov’s theorem (1956) [7] it follows that the general form of
isometric mappings of the set of all Boolean functions in n variables to itself is

f(x) −→ f(π(x))⊕ g(x),

where π is a permutation on the set Fn2 and g ∈ Fn [7]. In [6] all isometric mappings of the set of
all Boolean functions in n variables to itself, that preserve (anti-)self-duality of a bent function
were characterized.

In the current work we consider the mappings of the set of all generalized Boolean functions
in n variables to itself, which have the form

f(x) −→ f(π(x)) + g(x),

where π is a permutation on the set Fn2 and g ∈ GFn. It is clear that such mappings preserve
both Hamming and Lee distances between generalized Boolean functions.

The following result provides the construction of isometric mappings that preserve both
self-duality anti-self-duality of a gbent function.

Theorem 0.8 The isometric mapping of the set of all generalized Boolean functions in n vari-
ables to itself of the form

f(x) −→ f(π(x)) + g(x),

with
π(x) = L (x⊕ c) , g(x) =

q

2
〈c, x〉+ d,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ Zq, preserves (anti-)self-duality of a gbent function.
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Walsh zero spaces of APN functions
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Abstract

We report on work in progress that is motivated by the “Big APN Problem” that concerns
the existence of APN permutations of F2n for even n ≥ 8. Let f be a function from F2n

to F2n . We define a Walsh zero space (WZ space) of f to be any F2-linear n-dimensional
space of Walsh zeros of f . This definition is motivated by the fact that a function is CCZ-
equivalent to a permutation if and only if it possesses a pair of WZ spaces that intersect
trivially. We discuss characterization of Walsh zeros and construction of WZ spaces for
quadratic functions, and we include examples and results for Gold functions and for the
function f(x) = x3 + Tr(x9).

1 Background

Let F2n denote the finite field with 2n elements. A function f : F2n → F2n is almost perfect
nonlinear (APN) if for all a, b ∈ F2n , a 6= 0, the equation f(x + a) − f(x) = b has at most two
solutions x ∈ F2n . Without loss of generality, we can normalize any APN function such that
f(0) = 0, and we will assume this throughout.

APN functions, and more generally functions with low differential uniformity, have been
extensively studied due to their importance in the design of S-boxes of block ciphers in cryptog-
raphy, where they offer the best possible protection against the differential cryptanalysis attack.
In some block cipher designs, such as substitution-permutation networks (SPN), it is required
that S-boxes are invertible mappings. Of special interest are therefore APN functions which are
invertible, that is, they are permutations of F2n . Many APN permutations of F2n are known
for odd n. It is known that APN permutations of F2n do not exist for n = 2, 4. An APN
permutation of F26 was discovered in 2009 [2]. We will briefly describe the method by which it
was found. Our description is somewhat different from [2] but it is equivalent.

Let Trns denote the trace function from F2n to its subfield F2s . The absolute trace Trn1 will
be denoted simply as Tr. Let f be a function from F2n to F2n . For (a, b) ∈ F2n × F2n we define
the Walsh transform of f at (a, b) as Wf (a, b) =

∑
x∈F2n

(−1)Tr(ax+bf(x)). We say that (a, b) is a
Walsh zero of f ifWf (a, b) = 0. The Walsh spectrum of f is the set {Wf (a, b) : a, b ∈ F2n , b 6= 0}.

Definition 1.1 Let f be a function from F2n to F2n. Suppose that S is an F2-linear subspace
of F2n × F2n such that dimF2 S = n and each element of S except (0, 0) is a Walsh zero of f .
We say that S is a WZ space of f .

Note that F2n ×{0} is a WZ space of any function on F2n . We say that two WZ spaces S, T
of the same function intersect trivially if S ∩ T = {(0, 0)}.

The CCZ-equivalence of functions was introduced by Carlet, Charpin and Zinoviev in [4].
It has many important features, in particular it preserves the APN property. The construction
of APN permutation of F26 in [2] consists of choosing a certain APN function κ on F26 , and
then finding a permutation of F26 that is CCZ-equivalent to κ. For the latter task, the following
characterization is used in [2], which we present in a different but equivalent form.

Proposition 1.2 [2] Let f be a function from F2n to F2n such that f(0) = 0. Then f is CCZ-
equivalent to a permutation of F2n if and only if there exist two WZ spaces of f that intersect
trivially.
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The existence of APN permutations of F2n for even n ≥ 8 is an important open problem,
and it is called “The Big APN Problem” in [2].

Keeping in mind the approach of [2], one can attack this problem by considering a known
APN function and using Proposition 1.2 to determine if it is CCZ-equivalent to a permutation.
The first general results in this direction (i.e., involving infinite families of functions) were
announced by Göloğlu (joint work with Langevin) in 2015 at the conference Fq12 [6]. Their

work presently exists as preprint [7]. According to [7], Gold APN functions f(x) = x2
k+1,

where gcd(k, n) = 1, are never CCZ-equivalent to permutations of F2n when n is even, and

Kasami APN functions f(x) = x2
2k−2k+1, where gcd(k, n) = 1, are never CCZ-equivalent to

permutations of F2n when n is divisible by 4 (with the case n ≡ 2 (mod 4) remaining open).

2 Characterizing WZ spaces

In order to complement the previous work, we envision a different approach, while still employ-
ing Proposition 1.2. In [7] the non-existence of two trivially intersecting WZ spaces is argued by
assuming the contrary and driving this assumption to a contradiction. Instead, we plan to char-
acterize many (preferably all) WZ spaces for a given APN function, and show the non-existence
of two trivially intersecting WZ spaces in that way. This approach has some advantages. Exam-
ples of WZ spaces can be found with computer aid, which can inform the theoretical proofs. At
the same time, this proof method can also target discovery of a trivially intersecting pair of WZ
spaces should it in fact exist, which is something that the proof by contradiction can not target
as an objective. Furthermore, computer searches suggest that some APN functions (such as
Kasami and Dobbertin functions) may posses only one WZ space, namely the space F2n × {0}.
This assertion can be then set as the proof objective instead of the original objective.

2.1 Quadratic functions

We give further details for the case when the APN function is quadratic, that is, assuming that
the function is expressed in its unique polynomial form, then the exponent of each monomial has
binary weight at most 2. We note that the function κ used to construct the APN permutation
in dimension 6 is quadratic [2].

To characterize the WZ spaces of an APN function f we first have to characterize the Walsh
zeros of f . One possible way to do this is known as the “squaring method” that computes
(Wf (a, b))2, and it is often used to determine the entire Walsh spectrum of f . It associates a
certain linear form Lb to f and (a, b). As the symbol suggests, the linear form depends on b but
not on a. Then (a, b) is a Walsh zero of f if Tr(f(x)) does not vanish completely on the kernel
of Lb. For the APN function f(x) = x3 + Tr(x9) this computation was carried out in detail by
Bracken et al. in Section 2 of [1], see in particular equation (6) there. This computation was
further generalized by Budaghyan et al. in [3] to compute Walsh spectra (hence, implicitly, also
Walsh zeros) of the more general families of APN functions denoted F0, F1 and F2 in [3]. In
order to upper bound the cardinality of the kernel of the linear form, both [1] and [3] apply an
ad-hoc method developed earlier by Dobbertin [5].

It is worth noting that for investigations of such kernels one can apply a more systematic
theory developed by van der Geer and van der Vlugt [8]. While a more detailed exposition would
exceed the size limit of this abstract, we at least survey the results that one obtains in this way
for two families of quadratic APN functions.

Proposition 2.1 Let n be even, gcd(k, n) = 1, and a, b ∈ F2n. If b 6= 0, then (a, b) is a Walsh

zero of the Gold function f(x) = x2
k+1 if and only if b is a (2k +1)th power in F2n (equivalently,

b is a cube in F2n) and Trn2 (az) 6= 0 for each z ∈ F2n such that bz2
k+1 + 1 = 0.

Proposition 2.2 Let n be even and a, b ∈ F2n.
(i) If b 6= 0 and Tr(b) = 0 then (a, b) is a Walsh zero of f(x) = x3 + Tr(x9) if and only if it is a
Walsh zero of f(x) = x3.
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(ii) If Tr(b) = 1, let x∗ be the unique solution of x9 + x3 + bx + 1 = 0 in F2n. Then (a, b) is a
Walsh zero of f(x) = x3 + Tr(x9) if and only if x∗ is a cube in F2n and Trn2 (az) 6= 0 for each
z ∈ F2n such that z3 = x∗.

We note that these characterizations are enabled by the fact that in both cases the kernels
are either trivial or they are cosets of F4, where z denotes any non-zero element of the kernel in
both propositions. This naturally leads to applying trace to F4. While Proposition 2.1 is likely
“folklore” (as remarked in [7]), on the other hand Proposition 2.2 appears to characterize the
kernels more explicitly than in [1].

Equipped with the previous two propositions we can construct some non-trivial WZ spaces
for the two families of APN functions under consideration.

Proposition 2.3 Let n be even and gcd(k, n) = 1. Let u ∈ F∗2n. The set

Gk,u = {(a, 0) : a ∈ F2n | Tr(ua) = 0} ∪ {(a, u−(2k+1)) : a ∈ F2n | Tr(ua) = 1}

is a WZ space of the Gold function f(x) = x2
k+1 on F2n.

Proposition 2.4 Let n be even and f(x) = x3 + Tr(x9). Let b ∈ F∗2n.
(i) If Tr(b) = 0 and b is a cube in F2n, then G1,u is a WZ space of f where u is any of the cube
roots of 1/b.
(ii) If Tr(b) = 1 then let x∗ be the unique solution of x9 +x3 + bx+ 1 = 0 in F2n. If x∗ is a cube
in F2n and u is any of the cube roots of x∗, then the set

Su = {(a, 0) : a ∈ F2n | Tr(ua) = 0} ∪ {(a, b) : a ∈ F2n | Tr(ua) = 1}

is a WZ space of f .

3 Outlook

This work is currently in progress. We hope that it would lead to an alternative and possibly
simpler proof of CCZ-inequivalence of APN Gold functions with permutations in even dimen-
sions. Computer searches suggest that in certain dimensions (e.g., n = 8) the spaces Gk,u given
in Proposition 2.3 and the space F2n ×{0} are the only WZ spaces of the Gold function. While
additional WZ spaces will possibly exist in other dimensions, it seems that a complete classi-
fication of WZ spaces should be within reach for the Gold functions. As well, we will study
Walsh zero sets of other families of quadratic APN functions with the view of possibly finding
functions with richer sets of WZ spaces.
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Abstract

Bent functions from a vector space Vn over F2 of even dimension n = 2m into the cyclic
group Z2k , or equivalently, relative difference sets in Vn×Z2k with forbidden subgroup Z2k ,
can be obtained from spreads of Vn for any k ≤ n/2. In this talk we show the existence of
bent functions from Vn to Z2k , k ≥ 3, which do not come from the spread construction. We
present a construction of bent functions from Vn into Z2k , k ≤ n/6, (and more general, into
any abelian group of order 2k) obtained from partitions of F2m × F2m , which can be seen as
a generalization of the Desarguesian spread. As for the spreads, the union of a certain fixed
number of sets of these partitions is always the support of a Boolean bent function. Finally
we discuss generalizations to odd characteristic.

1 Introduction

Let (A,+A), (B,+B) be finite abelian groups. A function f from A to B is called a bent function
if

|
∑

x∈A
χ(x, f(x))| =

√
|A| (1)

for every character χ of A×B which is nontrivial on B. Equivalently, f : A→ B is bent if the
graph of f , G = {(x, f(x)) : x ∈ A}, is a relative difference set in A×B relative to B.

In the classical case, A = Vn and B = Vm are elementary abelian 2-groups, i.e., they are
vector spaces of dimension n and m respectively over the prime field F2. By (1), F : Vn → Vm

is bent, if m > 1 also called vectorial bent, if and only if the character sum

Wf (a, b) =
∑

x∈Vn
(−1)〈a,f(x)〉m⊕+〈b,x〉n

has absolute value 2n/2 for all nonzero a ∈ Vm and b ∈ Vn, (here 〈, 〉k denotes an inner product
in Vk). As is well known, n must then be even and m can be at most n/2. There are many
examples and constructions of Boolean bent functions (m = 1) in the literature. Even several
classes of bent functions from Vn to Vn/2 are known, such as Maiorana-McFarland functions,
Dillons H-class, see [2], and Kasami bent functions, cf.[1]. A particularly interesting construction
is the (partial) spread construction, as it works not only for functions from Vn to elementary
abelian groups Vk, but for functions from Vn to any abelian group B of order 2k, k ≤ m = n/2.

Recall that a partial spread S of Vn, n = 2m, is a set of m-dimensional subspaces of Vn which
pairwise intersect trivially. If |S| = 2m + 1, hence every nonzero element of Vn is in exactly
one of those subspaces, then S is called a (complete) spread. The standard example is the
Desarguesian spread, which has for Vn = F2m × F2m the representation S = {U,Us : s ∈ F2m},
with U = {(0, y) : y ∈ F2m} and for s ∈ F2m , Us = {(x, sx) : x ∈ F2m}.

Given a (complete) spread S of Vn, we obtain a bent function from Vn to B, |B| = 2k,
k ≤ n/2, as follows.

- For every element γ of B, except from w.l.o.g. 0 ∈ B, we assign the nonzero elements of
exactly 2m−k elements of S to the preimage of γ.
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- All other elements, i.e., the elements of 2m−k + 1 elements of S, are mapped to 0 ∈ B.

From this general construction we also infer that the union of any 2m−1 + 1 elements of S is
always the support of a Boolean bent function.

In this talk we are interested in bent functions from Vn to the cyclic group Z2k , equivalently
in relative difference sets in Vn×Z2k with forbidden subgroup Z2k . By (1), this are functions f
for which

Hf (a, b) =
∑

x∈Vn
ζ
af(x)

2k
(−1)〈b,x〉,

where ζ2k is a complex primitive 2kth root of unity, has absolute value 2n/2 for all nonzero
a ∈ Z2k and b ∈ Vn. Again such functions can only exist for m ≤ n/2, [10]. We remark that
functions f : Vn → Z2k satisfying the much weaker condition that |Hf (1, b)| = 2n/2 for all
b ∈ Vn are referred to as generalized bent functions. They have been intensively studied in many
papers, see [3, 4, 5, 6, 7, 8, 11]. If not also bent, generalized bent functions do not correspond
to relative difference sets.

Bent functions from Vn to Z2k can certainly be obtained with the spread construction. As
far as we are aware, for k ≥ 3 no construction is known that does not come from spread or
a partial spread. In this talk we ask the question whether, and for which k ≥ 3, there exist
such bent functions that do not come from (partial) spreads. We present a construction of bent
functions from Vn to Z2k , k ≤ n/6. With an argument via the algebraic degree of associated
Boolean bent functions we show that this construction does not come from (partial) spreads.
From the construction we infer partitions of Vn that have similar properties as spreads, in fact
can be interpreted as a generalization of the Desarguesian spread. In particular, the union of a
certain fixed number of sets of these partitions is always the support of a Boolean bent function.

2 Results

As we have to distinguish addition in different structures, we denote the addition in the complex
numbers and in the ring Z2k by +, the addition in the elementary abelian groups F2, Vn and
F2m is denoted by ⊕.

Let f be a function from Vn to Z2k , then we can write f as

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x)

for uniquely determined Boolean functions aj , 0 ≤ j ≤ k − 1, from Vn to F2.
As ingredients for our construction we will use the following facts.

- A function f : Vn → Z2k is bent if and only if 2tf is generalized bent for all t, 0 ≤ t ≤ k−1.

- f(x) = a0(x) + 2a1(x) + · · · + 2k−1ak−1(x) is generalized bent if and only if all Boolean
functions in the affine space of Boolean functions A = ak−1 ⊕ 〈ak−2, . . . , a0〉 are bent, and
for any three functions b0, b1, b2 ∈ A we have

(b0 ⊕ b1 ⊕ b2)∗ = b∗0 ⊕ b∗1 ⊕ b∗2,

where b∗ denotes the dual of a Boolean bent function b, see [3].

- Let d, e be integers such that gcd(2m− 1, d) = 1 and ed ≡ 1 mod 2m− 1, and suppose that
β0, β1, β2 satisfy

(β0 ⊕ β1 ⊕ β2)−e = β−e0 ⊕ β−e1 ⊕ β−e2 .

Then the Boolean bent functions bi(x) = Trm(βixy
d), i = 0, 1, 2, satisfy (b0 ⊕ b1 ⊕ b2)∗ =

b∗0 ⊕ b∗1 ⊕ b∗2, see [9].

We will then show the following Theorem.
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Theorem 2.1 Let m, j be integers such that gcd(2m − 1, 2j + 1) = 1 and gcd(2m − 1, 2j − 1) =
2k − 1, let e = 2m − 2j − 2, and let d be the inverse of e modulo 2m − 1. Then for a basis
{α0, α1, . . . , αk−1} of F2k over F2, the functions f1 and f2 given as

f1(x) =

k−1∑

i=0

Trm(αixy
d)2i, f2(x) =

k−1∑

i=0

Trm(α−ei xey)2i (2)

are bent functions from F2m × F2m to Z2k .

With an argument via algebraic degrees, we will then conclude

Corollary 2.2 Let m and j > 0 be integers such that gcd(2m − 1, 2j + 1) = 1 and gcd(2m −
1, 2j − 1) = 2k − 1, and let e, d, αi, 0 ≤ i ≤ k − 1, be as in Theorem 2.1. Then the functions
f1, f2 in (2) are bent functions from F2m × F2m to Z2k , which do not come from partial spreads.

The final part of the talk is dedicated to partitions which we infer from the functions in
Theorem 2.1

Let m, k be integers such that k divides m and gcd(2m − 1, 2k + 1) = 1, let e = 2m − 2k − 2
and d such that de ≡ 1 mod 2m − 1. For an element s ∈ F2m define

Us := {(x, sx−e) : x ∈ F2m}, U∗s = Us \ {(0, 0)}, and U = {(0, y) : y ∈ F2m}.

Then U , U∗s , s ∈ F2m , form a partition of F2m×F2m . Note that U , Us, s ∈ F2m , are the subspaces
of the Desarguesian spread if 2k+1 ≡ −e ≡ 1 mod 2m−1 (more general, if −e ≡ 2v mod 2m−1).
Also note that Us is not a subspace if we do not have −e ≡ 2v mod 2m − 1 for some integer v.

Similarly, for an element s ∈ F2m we define

Vs := {(x−ds, x) : x ∈ F2m}, V ∗s = Vs \ {(0, 0)}, and V = {(x, 0) : x ∈ F2m}.

Note that as above for the sets U and Us, if −d ≡ 2v mod 2m − 1, then Vs and V are the
subspaces of the Desarguesian spread.

For the divisor k of m and an element γ of F2k let

A(γ) =
⋃

s∈F2m
Trm
k

(s)=γ

U∗s and B(γ) =
⋃

s∈F2m
Trm
k

(s)=γ

V ∗s .

With this definitions we obtain two partitions of F2m × F2m

Γ1 = {U,A(γ); γ ∈ F2m}
Γ2 = {V,B(γ); γ ∈ F2m},

that have similar properties as spreads have:

Theorem 2.3 Let m, k be integers such that k divides m and gcd(2m − 1, 2k + 1) = 1, and let
π(i) = γi be a one-to-one map from Z2k to F2k . Define functions fA, fB : F2m × F2m → Z2k as
follows:

- If (x, y) ∈ A(γi) then fA(x, y) = i, and, w.l.o.g., fA(0, y) = 0 for all y ∈ F2m;

- If (x, y) ∈ B(γi) then fB(x, y) = i, and, w.l.o.g., f(x, 0) = 0 for all x ∈ F2m.

Then fA, fB are bent functions from F2m × F2m to Z2k .

Theorem 2.4 Let m, k be integers such that k divides m and gcd(2m − 1, 2k + 1) = 1, let
e = 2m − 2k − 2 and d such that de ≡ 1 mod 2m − 1.

I. Every Boolean function of which the support is the union of 2k−1 of the sets A(γ) is a bent
function. Likewise, their complements, i.e., the Boolean functions with U and 2k−1 of the
sets A(γ) as their support, are bent.
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II. Every Boolean function of which the support is the union of 2k−1 of the sets B(γ) is a
bent function. Likewise the Boolean functions with V and 2k−1 of the sets B(γ) as their
support, are bent.

The duals of the bent functions of the class in I are in the class in II (and vice versa).

Remark 2.5 (i) In the special case k = m, the partitions Γ1,Γ2 reduce to a Desarguesian
spread partition, and f in Theorem 2.3 is a spread function on the complete Desarguesian
spread. Theorem 2.4 describes then the well known PS−ap and PS+

ap bent functions, cf. [2].
Hence we may see the bent functions in Theorem 2.3, and the Boolean bent functions in
Theorem 2.4 as generalizations of the Desarguesian spread bent functions.

(ii) As for the classical spread functions, also the proof of Theorem 2.3, holds not only for
functions from F2m × F2m to Z2k , but for functions from F2m × F2m to any abelian group
B of order 2k. The bentness is a property of the partition of F2m×F2m. For instance, also
many more vectorial bent functions in dimension k are obtained.

(iii) Clearly, as for the spreads, the partitions Γ1 and Γ2 represent a whole equivalence class of
partitions. Numerically we confirmed that in general Γ1 and Γ2 are not equivalent.
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Abstract

The recent FLIP cipher is an encryption scheme described by Méaux et al. at the confer-
ence EUROCRYPT 2016. It is based on a new stream cipher model, called the filter permuta-
tor and tries to minimize some parameters (including the multiplicative depth). In the filter
permutator, the input to the Boolean function has constant Hamming weight equal to the
weight of the secret key. As a consequence, Boolean functions satisfying good cryptographic
criteria when restricted to the set of vectors with constant Hamming weight play an impor-
tant role in the FLIP stream cipher. Carlet et al. have shown that for Boolean functions with
restricted input, balancedness and nonlinearity parameters continue to play an important role
with respect to the corresponding attacks on the framework of FLIP ciphers. In particular,
Boolean functions which are uniformly distributed over F2 on En,k = {x ∈ Fn

2 | wH(x) = k}
for every 0 < k < n are called weightwise perfectly balanced (WPB) functions, where wH(x)
denotes the Hamming weight of x. In this extended abstract, we firstly propose two methods
of constructing weightwise perfectly balanced Boolean functions in 2k variables (where k
is a positive integer) by modifying the support of linear and quadratic functions. Further-
more, we derive a construction of n-variable weightwise almost perfectly balanced Boolean
functions for any positive integer n.

1 Introduction

In a cryptographic framework, Boolean functions are classically studied with an input ranging
over the vector space Fn2 of binary vectors of length n [2]. This is the case when the Boolean
functions are used as the (main) nonlinear components of a stream cipher, in the so-called com-
biner and filter models of pseudo-random generators. However, the input of a Boolean function
can be restricted to a subset of the vector space Fn2 . A recent example of such a situation is given
by the FLIP cipher [10]. The FLIP cipher is a new family of stream ciphers proposed by Méaux
et al. at Eurocrypt 2016, which is intended to be combined with a homomorphic encryption
scheme to create an acceptable system of fully homomorphic encryption [4, 8]. Essentially, the
FLIP cipher is one of the encryption schemes specifically designed to be combined with a ho-
momorphic encryption scheme to improve the efficiency of somewhat homomorphic encryption
frameworks [1]. The FLIP cipher is based on a new stream cipher model, called the filter permu-
tator and tries to minimize some parameters (including the multiplicative depth). The reader
notices that Méaux et al [9] have proposed in 2019, an improved filter permutators for efficient
FHE (in particular better Instances and implementations). A nice description of FLIP can be
found in [10]. An early version of FLIP faces an attack given by Duval et al. [5], which leads the
design of the filter function to become more complicated to reach better criteria on the subsets
of Fn2 . In 2017, Carlet, Méaux, and Rotella [3] provided a security analysis on FLIP cipher and
gave the first study on cryptographic criteria of Boolean functions with restricted input. This
produces a special situation for the structure of filter function: the input of the filter function
consists of those vectors in Fn2 which have constant Hamming weight (in fact, by definition in
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the filter permutator, the input to the Boolean function has constant Hamming weight equal
to the weight of the secret key). Carlet et al. [3] have shown that for Boolean functions with
restricted input, balancedness and nonlinearity parameters continue to play an important role
with respect to the corresponding attacks on the framework of FLIP ciphers. In particular,
Boolean functions which are uniformly distributed over F2 on En,k = {x ∈ Fn2 | wH(x) = k}
for every 0 < k < n are called weightwise perfectly balanced (WPB) functions, where wH(x)
denotes the Hamming weight of x. To our best knowledge, the first known construction of WPB
functions is due to [3] in 2017, which is designed through a recursive method. In 2008, Liu
and Mesnager [6] proposed a large class of WPB functions, which is 2-rotation symmetric.In
2019, Tang and Liu [11] also gave a construction of WPB functions. Some upper bounds on the
k-weight nonlinearity of Boolean functions are discussed in [3] and [7], respectively.

In this extended abstract, we firstly give a full study of the Hamming weight distribu-
tions of the linear function f(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xm and the quadratic function
g(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(xn ⊕ 1), where n = 2m. And then,
two concrete constructions of 2k-variable (where k is a positive integer) WPB functions by mod-
ifying the support of the linear function and the quadratic function are respectively proposed.
Lastly, a construction of n-variable almost-WPB functions for any positive integer n is given.

This extended abstract is organized as follows. Some definitions are presented in Section 2
but we assume the reader familiar with background on Boolean functions as well as standard
notation. In Section 3, a construction of WPB functions on 2k variables (where k is a positive
integer) obtained by modifying the support of a linear function is given. Next, a construction
of WPB functions on 2k variables obtained by modifying the support of a quadratic function is
proposed in Section 4. The construction of n-variable almost-WPB functions for any positive
integer n is given in Section 5.

2 Some preliminaries

For 0 ≤ k ≤ n, we always denote En,k = {x ∈ Fn2 |wt(x) = k}. Obviously,
⋃n
k=0En,k = Fn2 . We

denote by Bn the set of all the n-variable Boolean functions. A function f ∈ Bn is said to be
balanced if its truth table contains an equal number of 1’s and 0’s, i.e., if its Hamming weight
wt(f) = 2n−1. The k-weight of the function f ∈ Bn, denoted by wtk(f), is the cardinality of
the subset {x ∈ En,k | f(x) = 1}, i.e. wtk(f) = |{x ∈ En,k | f(x) = 1}|. It is known that the
cardinality of the subset En,k is |En,k| =

(
n
k

)
for 0 ≤ k ≤ n. Since

(
n
0

)
=
(
n
n

)
= 1, we have the

following Definition.

Definition 2.1 If a function f ∈ Bn satisfies wtk(f) = 1
2

(
n
k

)

for all integers 1 ≤ k ≤ n − 1, the function f(x) is called a weightwise perfectly balanced
(WPB) function.

Definition 2.2 If a function f ∈ Bn satisfies wtk(f) = 1
2

(
n
k

)
for all odd integers k ∈ {1, 2, · · · , n−

1}, then the function f(x) is called an odd-weightwise perfectly balanced (odd-WPB) function.

Definition 2.3 If a function f ∈ Bn satisfies wtk(f) =
⌊
1
2

(
n
k

)⌋
for all integers 0 ≤ k ≤ n, then

the function f(x) is called a weightwise almost perfectly balanced (almost-WPB) function.

3 Construction of WPB functions by modifying a linear func-
tion

.
Define an n-variable Boolean function as

f(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xm, (1)
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where n = 2m with m being a positive integer. Then, the support of the n-variable Boolean
function f(x) in (1) is

supp(f) = {(x1, x2, · · · , xn) ∈ Fn2 |wt(x1, x2, · · · , xm) is odd}. (2)

.

Theorem 3.1 For any odd integer k ∈ {1, 3, · · · , n − 1} and n = 2m, the n-variable Boolean
function f(x) in (1) satisfies wtk(f) = 1

2

(
n
k

)
. Hence, the function f(x) in (1) is odd-WPB.

Theorem 3.2 For any even integer k ∈ {2, 4, 6, · · · , n−2} and n = 2m, the n-variable Boolean

function f(x) in (1) satisfies wtk(f) = 1
2

(
n
k

)
− (−1) k2

2

(m
k
2

)
.

Corollary 3.3 For any even integer k ∈ {2, 4, 6, · · · , n−2} and n = 2m, we have
∑

0≤i≤k
i is odd

(
m
i

)(
m
k−i
)

=

1
2

(
n
k

)
− (−1) k2

2

(m
k
2

)
.

Given a positive integer m, define a 2m-variable Boolean function as

supp(fm) =
m⊔

i=1

{
(x, y, x, y, · · · , x, y) ∈ F2m

2 |x, y ∈ F2m−i

2 ,wt(x) is odd
}
. (3)

Theorem 3.4 The function fm in 2m variables defined in (3) is weightwise perfectly balanced.

Theorem 3.5 The ANF of the 2m-variable Boolean function fm(x) in (3) is fm(x1, x2, . . . , x2m) =
2m−1⊕
i=1

xi ⊕ fm−1(x1, x2, . . . , x2m−1)
2m−1∏
i=1

(xi ⊕ x2m−1+i ⊕ 1),

where f1(x1, x2) = x1. Moreover, the algebraic degree of the 2m-variable Boolean function
fm(x) in (3) is deg(fm) = 2m − 1.

In order to get a flexible construction of WPB functions, define




I
(1)
1 ⊆ {1, 2, · · · , n}, I(1)2 = {1, 2, · · · , n} \ I1,
I
(2)
1 ⊆ I(1)1 , I

(2)
2 = I

(1)
1 \ I

(2)
1 , I

(2)
3 ⊆ I(1)2 , I

(2)
4 = I

(1)
2 \ I

(2)
3 ,

· · · · · ·
I
(m)
1 ⊆ I(m−1)1 , I

(m)
2 = I

(m−1)
1 \ I(m)

1 , · · · · · · , I(m)
2m−1 ⊆ I

(m−1)
2m−1 , I

(m)
2m = I

(m−1)
2m−1 \ I(m)

2m−1,

where |I(i)j | = 2m−i, for 1 ≤ i ≤ m and 1 ≤ j ≤ 2i. For convenience, denote xI = (xi1 , xi2 , · · · , xit)
for x = (x1, x2, · · · , xn) and I = {i1, i2, · · · , it} ⊆ {1, 2, · · · , 2m}. Then, a flexible construction
of 2m-vriable WPB function is given as

supp(fm) =
m⊔

i=1

{
x ∈ F2m

2 |wt(x
I
(i)
1

) is odd, x
I
(i)
1

= x
I
(i)
3

= · · · = x
I
(i)

2i−1

, x
I
(i)
2

= x
I
(i)
4

= · · · = x
I
(i)

2i

}
,

where m is a positive integer. In fact, if the order of the entries in the vector x
I
(i)
j

is considered,

a more flexible constructions of WPB functions can be obtained.

4 Construction of WPB functions by modifying the support of
a quadratic function

Define an n-variable Boolean function as

g(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(xn ⊕ 1), (4)

where n = 2m with m being a positive integer.
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Theorem 4.1 For any integer k ∈ {1, 2, · · · , n−1} and n = 2m, the n-variable Boolean function

g(x) in (4) satisfies wtk(g) = 1
2

(
n
k

)
− δk

2

(m
k
2

)
, where δk =

{
1, k is even,
0, k is odd.

According to the values of the k-weights of the n-variable Boolean function g(x) defined in
(4), 1 ≤ k ≤ n− 1, we can construct another WPB function as follows.

Define a 2m-variable Boolean function gm(x) as

gm(x1, x2, . . . , x2m) = g(x1, x2, . . . , x2m)⊕ gm−1(x1, x2, . . . , x2m−1)
2m−1∏

i=1

(xi ⊕ x2m−1+i ⊕ 1), (5)

where m ≥ 1, g(x) is defined in (4), and g0(x1) = 0.

Theorem 4.2 The Boolean defined in (5) is weightwise perfectly balanced. Its algebraic degree
equals deg(gm) = 2m (hence it has a maximal algebraic degree).

5 Construction of almost-WPB functions

In this section, a construction of almost-WPB functions by modifying the support of a quadratic
Boolean function in any variables is proposed.

Define an n-variable Boolean function as

h(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(x2m ⊕ 1), (6)

where n is a positive integer and m = bn2 c.

Theorem 5.1 • For any integer k ∈ {1, 2, · · · , n − 1} and n = 2m + 1 with m ≥ 1, the
n-variable Boolean function h(x) in (6) satisfies wtk(h) = 1

2

(
n
k

)
− 1

2

( m
b k
2
c
)
.

• For any integer k ∈ {1, 2, · · · , n− 1} with n ≥ 2, the n-variable Boolean function h(x) in

(6) satisfies wtk(h) =

{ 1
2

(
n
k

)
, n is even and k is odd,

1
2

(
n
k

)
− 1

2

(bn
2
c

b k
2
c
)
, otherwise.

Define an n-variable Boolean function hn(x) as

hn(x1, x2, . . . , xn) = h(x1, x2, . . . , xn)⊕ hbn
2
c(x1, x2, . . . , xn)

bn
2
c∏

i=1

(xi ⊕ xbn
2
c+i ⊕ 1), (7)

where n ≥ 2, h(x1, x2, . . . , xn) is defined in (6), and h1(x1) = 0.

Theorem 5.2 • The Boolean function hn defined in (7) is almost weightwise perfectly bal-
anced.

• Its Hamming weight equals wt(hn) = 2n−1 − 2wt(n)−1, where wt(n) = wt(n1, n2, · · · , nt)
satisfying n = n12

0 + n22
1 + · · ·+ nt2

t−1.

• Its algebraic degree equals deg(hn) = n − wt(n) + 1, where wt(n) = wt(n1, n2, · · · , nt)
satisfying n = n12

0 + n22
1 + · · ·+ nt2

t−1.
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Abstract

In this work we study metric properties of the well-known family of binary Reed-Muller
codes. Let A be an arbitrary subset of the Boolean cube, and Â be the metric complement
of A — the set of all vectors of the Boolean cube at the maximal possible distance from A. If
the metric complement of Â coincides with A, then the set A is called a metrically regular set.
The problem of investigating metrically regular sets appeared when studying bent functions,
which have important applications in cryptography and coding theory and are also one of the
earliest examples of a metrically regular set. In this work we describe metric complements
and establish the metric regularity of the codes RM(0,m) and RM(k,m) for k > m − 3.
Additionally, the metric regularity of the codesRM(1, 5) andRM(2, 6) is proved. Combined
with previous results by Tokareva N. (2012) concerning duality of affine and bent functions,
this proves the metric regularity of most Reed-Muller codes with known covering radius. It
is conjectured that all Reed-Muller codes are metrically regular.

1 Introduction

The problem of investigating and classifying metrically regular sets was posed by Tokareva
[14, 15] when studying metric properties of bent functions [11]. A Boolean function f in even
number of variables m is called a bent function if it is at the maximal possible distance from the
set of affine functions.

Bent functions have various applications in cryptography, coding theory and combinatorics
[6, 15]. In cryptography, bent functions are valued because of their outstanding nonlinearity,
which allows one to construct S-boxes for block ciphers which possess high resistance to the linear
cryptanalysis [6]. However, many problems related to bent functions remain unsolved; in partic-
ular, the gap between the best known lower and upper bound on the number of bent functions
is extremely large; currently known constructions of bent functions are rather scarse. In 2012
[14], Tokareva has proved that, like bent functions are maximally distant from affine functions,
affine functions are at the maximal possible distance from bent functions, thus establishing the
metric regularity of both sets. This discovery arouses interest in studying the property of metric
regularity in order to better understand the structure of the set of bent functions.

Let us briefly overview the results obtained in this area. Metric regularity of several classes
of partition set functions is studied in [13]. The work [4] examines metric properties of self-
dual bent functions. Metric regularity has been actively investigated by the author: metric
complements of linear subspaces of the Boolean cube are studied in the paper [8], while the
works [9] and [10] are studying possible sizes of the largest and smallest metrically regular set.

In this work we investigate metric properties of Reed-Muller codes. Among the codes of high
order, covering radii of the codes RM(k,m), for k > m− 3 are known. The covering radius of
RM(1,m) for odd m > 7 is unknown, but has been determined for RM(1, 5) [1] and RM(1, 7)
[7, 3]. In [12], Schatz has found the covering radius of RM(2, 6), while recently Wang has

∗The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics
(project no. 0314-2019-0017) and supported by Russian Foundation for Basic Research (projects no. 18-07-01394,
19-31-90093) and Laboratory of Cryptography JetBrains Research.
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established the covering radius of RM(2, 7) [16]. For m > 7, the covering radius of RM(2,m)
is still unknown. We prove that the codes RM(k,m), for k = 0 and k > m − 3 and the codes
RM(1, 5) and RM(2, 6) are metrically regular and also describe their metric complements in
most cases.

2 Preliminaries

Let Fn
2 be the space of binary vectors of length n with the Hamming metric. The Hamming

distance d(·, ·) between two binary vectors is defined as the number of coordinates in which these
vectors differ, while wt(·) denotes the weight of a vector, i.e. the number of nonzero values it
contains. The plus sign + denotes addition modulo two (componentwise in case of vectors).

Let X ⊆ Fn
2 be an arbitrary set and y ∈ Fn

2 be an arbitrary vector. The distance from the
vector y to the set X is defined as

d(y,X) = min
x∈X

d(y, x).

The covering radius of the set X is defined as

ρ(X) = max
z∈Fn

2

d(z,X).

The set X with ρ(X) = r is also called a covering code [2] of radius r.
Consider the set

Y = {y ∈ Fn
2 |d(y,X) = ρ(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric
complement [8] of X and is denoted by X̂. Vectors from the metric complement are sometimes

called deep holes of a code. If
̂̂
X = X then the set X is said to be metrically regular [15].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular set,
then its metric complement Â is also a metrically regular set and both of them have the same
covering radius. For some simple examples of metric complements and metrically regular sets,
refer to [8, 9, 10].

The following trivial auxiliary lemma, established in [8], will be used throughout the paper.

Lemma 2.1 Let C ⊆ Fn
2 be a linear code. Then ρ(Ĉ) = ρ(C) and a vector x ∈ Fn

2 is in
̂̂
C if

and only if x+ Ĉ = Ĉ.

Let Fm be the set of all Boolean functions in m variables. The Reed-Muller code of order k
is defined as:

RM(k,m) = {f ∈ Fm : deg(f) 6 k},
where deg(·) denotes the degree of the algebraic normal form (ANF) of the function.

Let f and g be two functions in m variables. Denote as Lb
A : Fm

2 → Fm
2 the affine transfor-

mation of the variables with the matrix A and the vector b):

(f ◦ Lb
A)(x) = f(Ax + b).

Here ◦ denotes the composition of the functions. If the vector b is zero, it will be omitted from
the notation. Functions f and g are called linearly equivalent if one can be obtained from the
other by applying a nonsingular linear transformation to the variables, i.e. f = g ◦ LA, where
det A 6= 0.

Extended affine equivalence is more common when classifying boolean functions: functions
f and g are called EA-equivalent if there exists a nonsingular linear transformation of variables
A, a boolean vector b of length m and a function h of degree at most 1 such that f = g ◦Lb

A +h.
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For our study we will use a variant of these two equivalence relations, which will be referred
to as extended linear equivalence (to the power of k). Functions f and g are called ELk-equivalent
if there exists a nonsingular binary matrix A and a function h of degree at most k such that

f = g ◦ LA + h.

It is easy to see that this relation is indeed an equivalence. We will denote this equivalence by

f
k∼ g.
The Reed-Muller code of order k in m variables is usually denoted as RM(k,m). Since we

will refer to these codes regularly, we will instead often use Rk,m to denote the Reed-Muller
code of order k in m variables. We will sometimes omit the number of variables m if it is clear
from the context.

3 The Reed-Muller code RM(1, 5)

In the work [1], Berlekamp and Welch presented a partition of all cosets of the R1,5 code into
48 classes with respect to the EA-equivalence and obtained weight distributions for each class
of cosets. Four of these cosets contain only codewords of weight 12 and higher, and those cosets
constitute the metric complement of R1,5. Thus we can present the metric complement of this
code as:

R̂1,5 = {f : f
EA∼ g for some g from one of 4 farthest classes}

Since R1,5 is linear, it follows that ρ(R̂1,5) = ρ(R1,5) = 12, and f ∈ ̂̂R1,5 if and only if

f + R̂1,5 = R̂1,5. Thus, in order to establish the metric regularity of R1,5, we must prove that

for every f /∈ R1,5 it holds f + R̂1,5 6= R̂1,5.
This is done by taking a representative fc from every class of cosets C (aside from R1,5 itself)

and showing that there exists a function gc ∈ R̂1,5 such that fc + gc /∈ R̂1,5. Since the metric

complement R̂1,5 consists of EA-equivalence classes, this proves that none of the functions from

the class C belong to R̂1,5. Therefore, the following holds:

Theorem 3.1 The code R1,5 is metrically regular.

4 The Reed-Muller codes of orders 0, m, m− 1 and m− 2

The Reed-Muller codes of orders 0, m and m − 1 coincide with the repetition code, the whole
space and the even weight code respectively. It is trivial that all of them are metrically regular.

The Reed-Muller code of order m− 2 has covering radius 2 [2]. By definition, it consists of
all Boolean functions of degree at most m− 2. Since all functions of degree m have odd weight,
and all functions of smaller degree have even weight, functions of degree m are at distance 1
from Rm−2, while functions of degree m− 1 are at distance 2 and therefore

R̂m−2 = Rm−1 \ Rm−2.

Since Rm−2 is linear, ρ(R̂m−2) = ρ(Rm−2) = 2 and thus functions of degree m are at distance

1 from R̂m−2. It follows that
̂̂Rm−2 = Rm−2 and Rm−2 is metrically regular.

5 The Reed-Muller code of order m− 3

5.1 Covering radius

McLoughlin [5] has proved that

ρ(Rm−3) =

{
m+ 1, if m is odd,

m+ 2, if m is even.
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This result is reestablished by Cohen et al in the book “Covering codes” [2], using a method of
syndrome matrices, different from that in [5]. This method allows us not only to obtain covering
radius of the Reed-Muller code of order m − 3, but also to describe the metric complement of
this code. As with the covering radius, the cases of even and odd m are distinct.

5.2 Case m is even

In this case, the metric complement can be described as follows:

R̂m−3 =
⋃

g∈G
(g +Rm−3) ,

where

G = {g : supp(g) = {0, x1, x2 . . . , xm, x1 + . . .+ xm},
{x1, . . . , xm} are linearly independent}.

It is easy to see that all functions in G form an equivalence class with respect to the linear
equivalence. Let us pick any function g∗ from this class. We can now say that a function g is
in R̂m−3 if and only if g = g∗ ◦ LA + h for some nonsingular matrix A and some function h of
degree at most m − 3, or, in other words, g is in R̂m−3 if and only if g is ELm−3-equivalent to
g∗. Therefore,

R̂m−3 = {g : g
m−3∼ g∗},

where g∗ is some function from the class G (or from R̂m−3, since all functions in metric com-
plement are ELm−3-equivalent).

5.3 Case m is odd

In this case, the metric complement can be described as follows:

R̂m−3 =
⋃

g∈G1∪G2

(g +Rm−3),

where

G1 = {g : supp(g) = {0, x1, x2 . . . , xm}, {x1, . . . , xm} are linearly independent},

and

G2 = {g : supp(f) = {0, x1, x2 . . . , xm−1, x1 + . . .+ xm−1},
{x1, . . . , xm−1} are linearly independent}.

Same as with the case of even m, all functions in G1 form an equivalence class with respect
to the linear equivalence, so do functions from G2. If we now choose a representative from each
class, g∗1 from G1 and g∗2 from G2, we can describe metric complement in the following manner:

R̂m−3 = {g : g
m−3∼ g∗1} ∪ {g : g

m−3∼ g∗2}.

5.4 Metric regularity

Since the code Rm−3 is linear, it follows that ρ(R̂m−3) = ρ(Rm−3) and a function f is in
̂̂Rm−3

if and only if f + R̂m−3 = R̂m−3. Thus, like in the Section 3, we prove the metric regularity
of Rm−3 by proving that no functions other that those contained in Rm−3 preserve the metric
complement under addition, using the representations of metric complements obtained in the
previous subsections.
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6 The Reed-Muller code RM(2, 6)

Let us consider one other special case. If we change the order of values in the value vectors of
functions so that the first half of values corresponds to the values of the function when the last
variable is set to 0, and the other half corresponds to the values of the function when the last
variable is set to 1, then each Reed-Muller code (for m > 1, r > 0) can be inductively defined
as follows:

Rr,m = {(u,u + v)|u ∈ Rr,m−1,v ∈ Rr−1,m−1}.
In particular,

R2,6 = {(u,u + v)|u ∈ R2,5,v ∈ R1,5}.
Since both R2,5 and R1,5 were shown to be metrically regular, this construction proves useful

and allows us to establish the metric regularity of the code R2,6 as well. From now on, vectors
in bold will represent value vectors of functions in 5 variables (of length 32), while value vectors
of 6-variable functions will be presented as pairs of value vectors of 5-variable functions.

Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. We will prove that (ũ, ũ + ṽ) is in R2,6 in two steps: first we establish
that ũ is in R2,5, then we prove that ṽ is in R1,5. The following results heavily rely on the fact
thatR2,6 attains the upper bound on the covering radius provided by the (u,u + v) construction,
i.e. ρ(R2,6) = ρ(R2,5) + ρ(R1,5) [12].

Recall (Section 5) that R̂2,5 = {g : g
2∼ g1} ∪ {g : g

2∼ g2}, where g1 and g2 are some
representatives of two EL2-equivalence classes. Let us denote

R̂1
2,5 := {g : g

2∼ g1}, R̂2
2,5 := {g : g

2∼ g2}.

The following lemma is useful when proving that ũ ∈ R2,5:

Lemma 6.1 For each i = 1, 2 one of the following statements holds:

1. ∀y ∈ R̂i
2,5 ∀w ∈ F32

2 it holds (y,w) /∈ R̂2,6;

2. ∀y ∈ R̂i
2,5 ∃w ∈ F32

2 such that (y,w) ∈ R̂2,6;

This lemma tells us that for each EL2-equivalence class of R̂2,5, either all vectors appear in
the metric complement of R2,6 as the first half of the vector, or no vectors do. Since for any

(ũ, ũ + ṽ) ∈ ̂̂R2,6 it holds (ũ, ũ + ṽ) + R̂2,6 = R̂2,6, it is easy to show that ũ must keep R̂2,5,

R̂1
2,5 or R̂2

2,5 in place under addition. From the proof of the metric regularity of the code Rm−3,m
for odd m it is not hard to see that only the vectors from R2,5 do that, and thus the following
holds:

Proposition 6.2 Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. Then ũ ∈ R2,5.

Recall from Section 3 that R̂1,5 is composed of 4 EA-equivalence classes: R̂1,5 =
⋃4

i=1 R̂i
1,5.

Somewhat similar to Lemma 6.1, the following statement holds:

Lemma 6.3 For each i = 1, 2, 3, 4 one of the following statements holds:

1. ∀w′ ∈ R̂i
1,5 ∀(y,w) ∈ R̂2,6 ∀u ∈ R2,5 (d(y,u) = 6→ w + u 6= w′);

2. ∀w′ ∈ R̂i
1,5 ∃(y,w) ∈ R̂2,6 ∃u ∈ R2,5 : (d(y,u) = 6 ∧w + u = w′);

The following result shows that any of the EA-equivalence classes of the metric complement
of R1,5 are also rather “unstable” when summed with a non-affine function:

Lemma 6.4 For any v /∈ R1,5 and any i = 1, 2, 3, 4 there exists a vector w ∈ R̂i
1,5 such that

v + w /∈ R̂1,5.
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These last two lemmas allow us to show that for any (ũ, ũ + ṽ) ∈ ̂̂R2,6, the vector ṽ is in
R1,5. Combined with Proposition 6.2, this results in the

Theorem 6.5 Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. Then (ũ, ũ + ṽ) ∈ R2,6.

Since the inverse inclusion holds for any linear code, Theorem 6.5 establishes the metric
regularity of the code R2,6.

7 Conclusion

We have established the metric regularity of the codes RM(1, 5), RM(2, 6) and of the codes
RM(k,m) for k > m − 3. Factoring in the result by Tokareva [14], which proves the metric
regularity of RM(1,m) for even m, we have covered all infinite families of Reed-Muller codes
with known covering radius. The only other Reed-Muller codes with known covering radius,
metric regularity of which has not been yet established, are RM(1, 7) and RM(2, 7). Given
these results, we formulate the following

Conjecture 1 All Reed-Muller codes RM(k,m) are metrically regular.
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Non-linearity of the Carlet-Feng function,

and repartition of Gauss sums

François Rodier∗

Abstract

The search for Boolean functions that can withstand the main crypyographic at-
tacks is essential. In 2008, Carlet and Feng studied a class of functions which have
optimal cryptographic properties with the exception of nonlinearity for which they
give a good but not optimal bound. After several people have worked on this problem
of nonlinearity they have asked for a new answer to this issue. We provide a new
solution to improve the evaluation of the nonlinearity of the Carlet-Feng function, by
means of the estimation of the distribution of Gauss sums. This work is in progress
and we give some suggestions to improve this work.

Keywords: Carlet-Feng function, nonlinearity, Gaussian sums, equidistribution, discrep-
ancy

1 Introduction

Boolean functions on the space Fm2 are important in cryptography, where they occur in
stream ciphers or private key systems. In both cases, the properties of systems depend on
the nonlinearity of a Boolean function. The nonlinearity of a Boolean function f : Fm2 −→
F2 is the distance from f to the set of affine functions with m variables. The nonlinearity
is therefore an important cryptographic parameter. We refer to [1] for a global survey on
the Boolean functions.
It is useful to have at one’s disposal Boolean functions with highest nonlinearity. The
problem of the research of the maximum of the degree of nonlinearity comes down to
minimize the Fourier transform of Boolean functions.

1.1 The Carlet-Feng function

Let n be a positive integer and q = 2n. In 2008, Carlet and Feng [2] studied a class of
Boolean functions f on F2n which is defined by their support

{0, 1, α, α2, . . . , α2n−1−2}

where α is a primitive element of the field F2n . In the same article they show that these
functions when n varies have optimum algebraic immunity, good nonlinearity and optimum
algebraic degree. These computations are very good but still not good enough: in fact
these bounds are not enough for ensuring a sufficient nonlinearity. Some works have been
done on that by Q. Wang and P. Stanica [10] and other authors (cf. Li et al [7] and Tang
et al. [9]). They find the bound

2n−1 − nl(f) ≤ 1

π
q1/2

(
n ln 2 + γ + ln

(
8

π

)
+ o(1)

)

∗Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille,
UMR 7373, 13288 Marseille, France
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where γ is the Euler’s constant. Nevertheless, there is a gap between the bound that they
can prove and the actual computed values for a finite numbers of functions which are very
good, of order 2n−1 − 2n/2. Carlet and some authors cited above [7, 9, 10] who have also
worked on this nonlinearity asked for new answer to this problem. In this paper we bring a
new solution to improve the evaluation of the nonlinearity of the Carlet-Feng function, by
means of the estimation of the distribution of Gauss sums. We will find a slightly better
asymptotic bound (see (2)) but this work is in progress and we give some suggestions to
improve this work and hopefully to get a result closer to what expected. It will be the
same for other classes of Boolean functions which are based on Carlet-Feng construction.

1.2 The nonlinearity

The nonlinearity of these functions is given by

nl(f) = 2n−1 − max
λ∈F∗2n

|Sλ| where Sλ =
2n−2∑

i=2n−1−1
(−1)Tr(λα

i). (1)

We define ζ = exp
(

2iπ
2n−1

)
, χ be the multiplicative character of F2n such that χ(α) = ζ.

For a ∈ F∗q let us define the Gaussian sum G(a, χ) by

G(a, χ) =
∑

x∈F∗q
χ(x) exp(πiTr(ax))

and G(χ) = G(1, χ). Let λ = α` with 1 ≤ ` ≤ q − 2. By Fourier transformation of (1) we
get

Sλ =
1

q − 1



q−2∑

µ=1

G(χµ)ζ−µ`
ζ−µ(

q
2
−1) − 1

1− ζ−µ − q

2


 .

Carlet and Feng deduced from that the bound

|Sλ| ≤
1

q − 1



q−2∑

µ=1

√
q

∣∣∣∣∣
ζ−µ(

q
2
−1) − 1

1− ζ−µ

∣∣∣∣∣+
q

2


 .

The upperbound of |Sλ| is attained if the arguments of G(χµ)ζ−µ` are the opposite of the

ones of ζ−µ(
q
2−1)−1

1−ζ−µ . I will show that this situation is impossible and that will lead us to a
better bound.

2 Equidistribution of the arguments of Gauss sums

2.1 A result of Nicolas Katz

Nicolas Katz (chapter 9 in [5]) has proved that

Proposition 2.1 For a fixed in F∗2n the arguments of G(a, χµ) for 1 ≤ µ ≤ q − 2 are
equidistributed on the segment [−π, π].

For l fixed in F∗2n the arguments of G(χµ)ζ−µl for 1 ≤ µ ≤ q − 2 are also equidistributed
on the segment [−π, π] since by [8] theorem 5.12, they satisfy: G(χµ)ζ−µl = G(αl, χµ).
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2.2 Discrepancy

To get a result a little more precise than Katz’s we need the notion of discrepancy. We
define the discrepancy (see [4] or [6]) of a sequence of N real numbers x1, . . . , xN ∈ [0, 1[
by

DN (xN ) = max
0≤x≤1

|A(x,N)

N
− x|

where A(x,N) = number of m ≤ N such that xm ≤ x.

Proposition 2.2 A sequence (xN )N≥1 is uniformly distributed mod 1 if and only if

lim
N→∞

DN (xN ) = 0.

We have an estimate of the discrepancy thanks to Erdös-Turan-Koksma’s inequality.

Lemma 2.3 (Erdös-Turan-Koksma’s inequality) There is an absolute constant C
(independent of xN ) such that for every H ≥ 1,

DN (xN ) < C

(
1

H
+

H∑

h=1

1

h

∣∣∣∣∣
1

N

N∑

m=1

exp(2πihxm)

∣∣∣∣∣

)

We will use also a result of Deligne obtained by using Algebraic Geometry “à la Grothendieck”.

Proposition 2.4 (Deligne [3]) For ψ an additive character of Fq and a ∈ F∗q, we have

|
∑

x1x2...xr=1

ψ(x1 + x2 + · · ·+ xr)| ≤ rq(r−1)/2.

With this proposition, we can show that, for a 6= 0 one has |∑1≤µ≤q−2G(a, χµ)r| ≤
1 + rq(r+1)/2. So we can show more than Katz’s result with the help of proposition (2.2).

Proposition 2.5 For l fixed in F∗2n the arguments arg(zµ) of zµ = G(χµ)ζ−µl for 1 ≤ µ ≤
q − 2 fulfill

Dq−2

(
arg(zµ)

2π

)
< O(q−1/4)

Proof: We use Erdös-Turan-Koksma’s inequality to evaluate this dicrepancy, and use
Deligne’s result to bound |∑1≤µ≤q−2G(a, χµ)r| which gives the result. Whence, if H ≤
q1/2

Dq−2

(
arg(zµ)

2π

)
< O


 1

H
+

1

q − 2

H∑

h=1

1

hqh/2

∣∣∣∣∣∣

q−2∑

µ=1

G((−1)Tr(α
l), χµ)h

∣∣∣∣∣∣




< O

(
1

H
+

1

q − 2

H∑

h=1

1

hqh/2
hq(h+1)/2

)

= O

(
1

H
+
Hq1/2

q − 2

)

If H = q1/4, then Dq−2
(
arg(zµ)

2π

)
< O

(
q3/4+q3/4

q−2

)
= O

(
q−1/4

)
. �

Lemma 2.6 If the am is an increasing sequence and if the discrepancy of am is D, then
|ai − i

m | ≤ D.
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Proof: The lemma is a consequence of [6, Section 2, Discrepancy, theorem 1.4]. �

3 Distribution of the arguments of aµ

Let aµ =
ζ−µ(

q
2
−1) − 1

1− ζ−µ .

Proposition 3.1 The aµ are on the singular plane cubic which is the image of the unit
circle by the map

z → 1

z + z2

with |z| = 1. The absolute value is |aµ| = (2 cos( πµ
2(q−1)))

−1. The argument is arg aµ =
3πµ

2(q−1) for µ even or π/2 + 3πµ
2(q−1) for µ odd. The complex conjugate of aµ is aq−1−µ.

Proof: If µ is even, let us take z = exp(− πµi
q−1). One has z2 = ζ−µ. And one has also

zq−1 = exp(−πµi) = exp(−2πiµ/2) = 1.

Thus zq−2 = z−1, hence aµ = z2(
q
2−1)−1
1−z2 = z(q−2)−1

1−z2 = z−1−1
1−z2 = 1−z

z−z3 = 1
z+z2

. If µ is odd, we

just use z = − exp(− πµi
q−1). To compute the absolute value and the argument of aµ, you

just have to consider the rhombus of vertices 0, z, z + z2, z2. �

3.1 Exemple: with m = 7
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4 Applications

So we conclude from the preceding sections that for a fixed ` the arguments of G(χµ)ζ−µ`

are equidistributed on [−π, π], and the arguments of aµ are equidistributed on [−3π/2, 3π/2]
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so, as we said before, it is impossible to have arg(G(χµ)ζ−µ`) +arg(aµ) = 0 (mod 2π) and
the upperbound of |Sλ| is not attained.
So, in place of computing the sum

∑q−2
µ=1G(χµ)ζ−µ`aµ we can replace it by the sum∑q−2

µ=1(hσ(µ)aµ) where H = {hµ} is the set of Gauss sums and σ is some permutation
of this set. Let us renumber the hµ for µ even (with multiplicities) in the anticlockwise
orientation: from h2 which will be of weakest positive or zero argument up to hq−2 which

will be of higher positive argument. Let kx = q1/2 exp
(
i
(

2πx
q−1

))
. Let σ runs over the set

of all permutation of the set H. The preceding proposition implies
∑q−2

µ=1G(χµ)ζ−µ`aµ ≤

2 maxσ

(
<e∑q−2

µ=2
µ even

(hσ(µ)aµ)

)
.

Lemma 4.1 For 2 ≤ µ ≤ q − 2 and µ even, we have

∣∣∣∣<e(hσ(µ)aµ − kσ(µ)aµ)

∣∣∣∣ = O

(
q1/4

cos πµ
2(q−1)

)

Proof: We use Proposition 2.5 and Lemma 2.6. �

From Proposition 2.5, we get the following lemma.

Lemma 4.2 The sums <e
q−2∑

µ=2
µ even

(hσ(µ)aµ) satisfy

max
σ

(
<e

q−2∑

µ=1

(hσ(µ)aµ)

)
≤ 2<e

q/2∑

µ=2
µ even

(bµaµ) +O(q5/4 log q)

where we denote by bµ the following numbers for µ even and 2 ≤ µ ≤ q−2: if 2 ≤ µ ≤ q/2,
then bµ = kµ/2, if q/2 < µ ≤ 2q/3, then bµ = k3µ/2−q/2, if 2q/3 < µ ≤ q − 2, then
bµ = k3µ/4.

Proof: We use the lemma 4.1 to replace maxσ

(
<e∑q−2

µ=1(hσ(µ)aµ)
)

by

maxσ

(
<e∑q−2

µ=1(kσ(µ)aµ)
)

+O(q5/4 log q).

Then denote by D the discrepancy of the sequence H. Let β be the largest integer (if there
is some) such that | arg kσ(β) − arg(bβ)| > 2πD. Then for all µ > β we have | arg kσ(µ) −
arg(bµ)| ≤ 2πD. From the lemma 2.6 there exists γ such that | arg kσ(γ)−arg(bβ)| ≤ 2πD.
Let τ be the transposition between β and σ(γ). Then one can check that

<e(bβaβ + kσ(γ)aσ(γ)) > <e(kσ(γ)aβ + bβaσ(γ))

therefore 2<e∑q−2
µ=1
µ even

(kσ(µ)aµ) < 2<e∑q−2
µ=1
µ even

(kσ◦τ(µ)aµ) and the sum is not maximal.

So, if the sum is maximal, then there does not exist such a β, that is for all µ we have

| arg kσ(µ) − arg(bµ)| ≤ 2πD. Whence
∣∣∣<e

∑q−2
µ=1(bµaµ) − maxσ

(
<e∑q−2

µ=1(kσ(µ)aµ)
)∣∣∣ ≤

O(q5/4 log q).
Let B be the set of all bµ’s for µ even. Now we have to take also in consideration the
µ odd. When you make the same reasoning, you end up with a set B which is just the
complex conjugate of B. When you take the union B ∪ B, you get q elements uniformly
distributed in the interval [0, 2π]. �
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Proposition 4.3 The upper bound of

q−2∑

µ=1

G(χµ)ζ−µ`aµ is at most equal to

q3/2

π
(ln q − 0.3786 + o(1)).

Proof: Up to O(q5/4 log q) it is enough to compute:

max
σ

(
<e

q−2∑

µ=1

(kσ(µ)aµ)

)
≤ 2q1/2

q/2∑

µ=1
µeven

1

2
− 2q1/2

2q/3∑

µ=q/2
µeven

cos 3πµ
2(q−1)

2 cos πµ
2(q−1)

+ 2q1/2
q−2∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

≤ q3/2

2
− 4q1/2

2q/3∑

µ=q/2
µeven

cos2
πµ

2(q − 1)
+ 2q1/2

q−2∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

.

Since the function 1
2 cos(xπ/2) − 1

π(1−x) is continuous on [2/3, 1], and since the µ
q−1 are

uniformly distributed on [2/3, 1] we get by [6, theorem 1.1]:

2

q − 2

q−2∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

− 2

π

q−2∑

µ=2q/3
µeven

1

q − µ = (1 + o(1))

∫ 1

2/3

(
1

2 cos xπ2
− 1

π

1

1− x

)
dx

=
ln 2 − lnπ + ln 3

π
− ln(7 + 4

√
3)

2π
+ o(1).

Then, using Euler’s formula on harmonic series:

2

q1/2(q − 2)
<e

q−2∑

µ=2q/3
µeven

(σ(hµ)aµ) ≤ log q − lnπ + γ

π
− ln(7 + 4

√
3)

2π
+ o(1).

Finally, it is easy to compute the other terms, and we get the result. �

4.1 Final result

Having noticed that

∣∣∣∣
q−2∑

µ=1

G(χµ)ζ−µ`aµ

∣∣∣∣ ≤ 2 max
σ

(
<e

q−2∑

µ=2
µeven

(hσ(µ)aµ)

)
+O(q5/4 log q)

we get finally

Theorem 4.4 The nonlinearity of the Carlet-Feng function fulfills

2n−1 − nl(f) ≤ q1/2

π
(log q − 0.3786 + o(1)) . (2)
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5 Conclusion

The improvement is not very important, but this argument may be optimised by

• taking in account the invariance of Gauss sums under the Frobenius automorphism;

• making it possible to make our argument work for all n instead of having an asymp-
totic result;

• taking in account the irregularity of the distribution of Gauss sums (one way to do
this might be to look at the equidistribution of several Gauss sums simultaneously);

• improving the bound of nonlinearity for other classes of Boolean functions which are
based on Carlet-Feng construction.
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