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INTRODUCTION




The black box setting
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The grey box setting



Masking

Basic idea: Split the data in shares and operate on them

To compute y = f(x), we splitx = x; + x,
think of x; as one-time pad encryption of x with a key x,

Then y can be recovered from y; = f1(x1) and y, = f>(x5)
note that f;(x,) reveals nothing about x

Even if an adversary compromises an entire part of the chip (f;(x1))

no sensitive data is leaked

This is (essentially) a variant of the wire probe model of Ishai, Sahai and Wagner
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Threshold Implementations (Tl) in a nutshell

m Secure implementations in HW are more challenging than in SW because of physical effects like
glitches which cause additional leakage

m [lis a provably secure masking scheme based on SSS and MPC

m [nitially proposed for 1st order SCA [NRROG] extended to any order [BGNNR14]
m [he first countermeasure secure in circuits with physical defaults like glitches
m Efficient (area, performance, latency, power, energy) in HW

m  Any HW technology



Tl conditions
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Higher-order Threshold Implementations

m d-th order Non-completeness [BGNNR14]

Property 2 (d™-order non-completeness). Any combination of up to d compo-
nent functions f; of F' must be independent of at least one input share.

m d+1 Tl always leads to a sharing which is expansion: s;;, = d + 1,5, = (d + 1)}

m Higher-order td+1 Tl also can lead to expansion

Theorem 2. There always exist a d"-order TI of a function of degree t that

requires Sin >t X d + 1 input and Sour > (SQ") output shares.



Sharings for higher-order Threshold Implementations

Definition 2 ([Pet19]). A d**-order non-complete set covering C"(s,t,d) is a
set of subsets from the universe of the inputs, Us = {1,...,s}, such that:

1. each t-subset of Us is a subset of at least one element of C™(s,t,d),

2. each element of C"“(s,t,d) has size at ledst t, and
3. a minimum of d + 1 elements of C"“(s,t,d) are needed to cover Us.

Example of a set covering: €"°(3,2,1) = {{1,2},{2,3},{1,3}}

Lemma 27 ([Pet19]) If s > td + 1 then for every C"(s,t,d) there exists
C"(s+ 1,t,d) of equal cardinality.
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Tl sharing
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Affine equivalence (1)

m 302 affine equivalent classes of 4x4 S-boxes - S’=A0SoB [BNNRS12]
B There are 1 affine, 6 quadratic and 295 cubic 4x4 classes

B Half of the 4x4 S-boxes belong to A4

B The affine and the quadratic S-boxes can be shared with 3 shares
B The cubic are shared with 4 or 5 shares or using decomposition

unshared 3 shares 4 shares 5 shares
remark
1 2 3 4 1 2 3 1
affine 1 1 1 1
quadratic 6 9 1 6 6
cubic in A1s 30 28 2 30 30
cubic in A1e 114 113 114 114

cubicin S16\ A1s

22

125

151
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Affine equivalence (2)
B 4 affine equivalent classes of 3x3 S-boxes (Bilgin et al. [BNNRS12])

B There are 1 affine and 3 quadratic 3x3 classes - shared with 3 and 4 shares

B /5 quadratic classes for b-bit permutations classified by Bozilov et al. [BBS17]

B 30 of them have sharing with 3 shares, all of them have sharing with 4 shares

B 2263 quadratic classes for 6-bit permutations classified by De Meyer and Bilgin
[DB18]
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Decomposition - reduces the degree
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B Poschmann et al. [PMKLWL11] for the Present S-box
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B Classification and decomposition of all 3x3 and 4x4 S-boxes, [BNNRS12]

B A cubic 4 bit S-box can be decomposed on 2 or more quadratic S-boxes in this way
only if it belongs to the Alternative group.

B What are the conditions for an n-bit permutation to have a decomposition?
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Decomposition — optimizations
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B Kutzner et al. [KHPW12] again for the Present S-box
B Implemented with 3 shares S’ = G(G(.))
] Gl — Gz — G3
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Decomposition - factorization

- @ X €r

S(x) S(x) X

For cubic s-boxes S(.) can be used the following approach proposed by Kutzner et al.
[KNP12]

B Factorization S(.) = U(.) + V(.)
B U(.) contains all the cubic terms, V(.) quadratic
B U(.)=F(G()) is decomposed with quadratic F(.) and G(.)
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Evaluating an S-box

If we have an n-bit permutation we can either:

B Work with the Boolean functions
B Use the tower field approach, i.e. work in the sub-field(s) e.g. Canright
B Work in GF(2"): Polynomial presentation of the S-box [RP10]

B Nikova et al. [NNR18]: Decomposition of the inverse power function
in GF(2") for n up to 16 on quadratic functions
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How to construct “good” S-boxes (1)

m Shannon-expansion ‘ (%, ns1 = 0) ‘ (Z,2ns1 = 1) ‘

| (Sa2(z),G(z) | (S1(2),F(2)) |

m S, n-bit permutations

m F, G, Boolean functions

|(1 Tnt1 = 0,240 = 0) ‘l Tnt1 = 0,240 = 1) ‘z Tpnt1 = 1, 2p10 = 0) ‘1 Tnt1 = 1, xps0 = 1) |

| (S4(Z), G2(Z), G4(Z)) | (S3(Z), Fa(Z), Fa(z)) | (S2(2),G1(2),Gs(Z)) | (S ), F3(z)) |

m Sisan (n+1)-bit permutation or an (n+2)-bit permutation when certain relations
between the functions hold, Varici et al. [VNNR18]
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How to construct “good” S-boxes (2)

m Bossetal. [BGGLMS17],

4
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m De Meyer and Varici [DV17]
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e @ Open question:
> xZ o
@ Tl sharing @ Under what conditions
N : the inverse of the Tl sharing is
y @ a Tl sharing of the inverse S-box?
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RECENT RESULTS




Cryptanalysis of masked ciphers

m The entropy of observed shared values can be bounded in terms of the nontrivial Fourier
coefficients of its distribution

m We can use linear cryptanalysis (where the secret is fixed)

m We need sharings with low maximum absolute correlation

— High nonlinearity of the sharing (without considering the last component function of a
share)

m This reduces the need for extra randomness

Tim Beyne and Siemen Dhooghe and Zhenda Zhang, “Cryptanalysis of Masked Ciphers: A not so Random Idea”, to appear at AsiaCrypt 2020.
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Why nonlinearity provides security

 AES Diffusion Pattern

| L] %
SR> MC> SR> NQ}

* Strong diffusion guarantees security of power samples which are “close”
together

* Further rounds activate many strong S-boxes
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Open problems

Is it possible to give bounds for the maximum absolute correlation of the sharing
given the correlation of the S-box?

m Since shared S-boxes are large, can we speed up verification techniques?

m How to construct strong nonlinear sharing?
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Resilient uniformity
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Resilient uniformity

Definition 2 (A resilient). Let f(x) = f(x'.....2™) be a Boolean function on
F5 and A be a monotone decreasing set. Then f(x) is called A resilient if any
of its restrictions obtained by fixring an iput set A € A of inputs coordinates is
balanced.

Definition 4 (A resilient uniformity). A function F(%) =y is A resilient
uniform if for all I € A there exists a set J € A such that for all realizations
ok =

Ty, Uy there exists a constant ¢ such that for all secrets x and outputs § €

Sh(F(x)) with y5 = y% :

|

| {z € Sh(x) with 1 = 7] ‘ F(z) =

L =e.
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“Consolidating Masking Schemes” [RBNGV15]
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Application to PRESENT
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Symmetric key design
open problems

m Can we design a Tl sharing-friendly cipher?
m What would its diffusion layer be?
m Can we design S-boxes with specifically good properties when shared?

m Can the cipher be designed so that allows for higher-order protection?
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