Lightweight Cryptography –

When Cryptography Meets Mathematics

Anne Canteaut

Inria, Paris, France

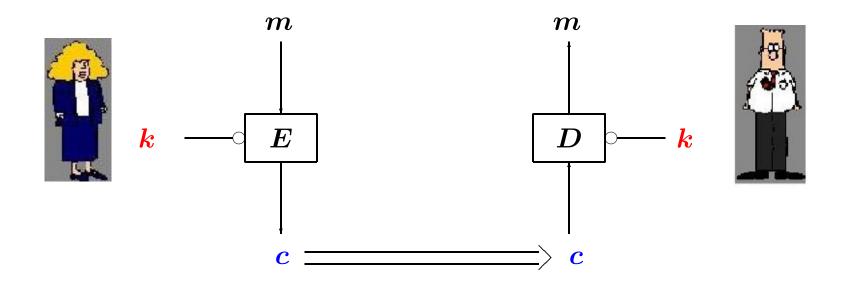
University of Bergen - October 17, 2019

Ínría

New implementation constraints

Block ciphers

k is the secret key.



Problem 1: design a family of permutations E_k of $\{0,1\}^n$ which "behave as random permutations".

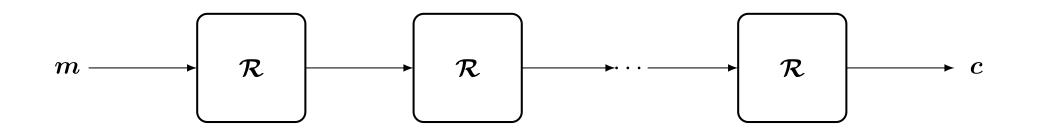
Problem 2: design a mode of operation describing how E_k can used for encrypting messages of any length.

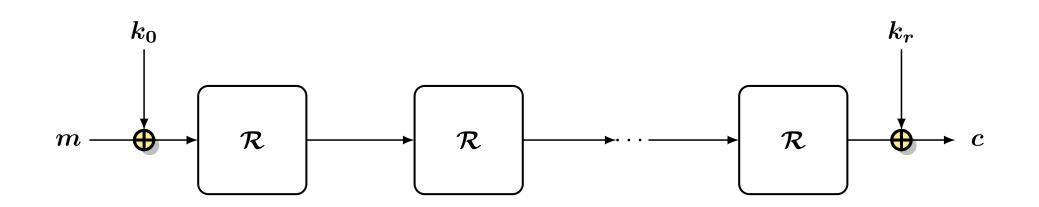
What is a block cipher?

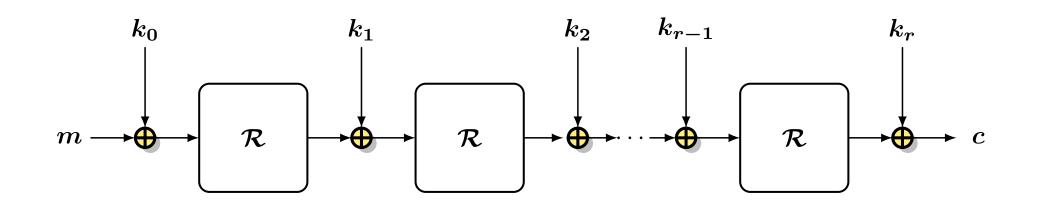
$E_k: \{0,1\}^n \longrightarrow \{0,1\}^n, \ n \in \{64,128\}$

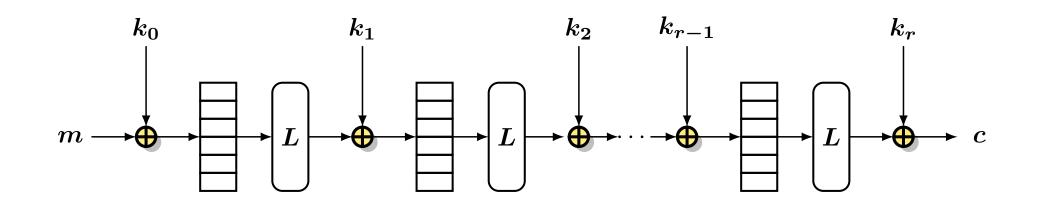
- indistinguishable from a set of randomly chosen permutations of $\{0,1\}^n$
- implementable

 $\rightarrow \mathsf{Contradiction!}$









AES [Daemen-Rijmen 98][FIPS PUB 197]

- ullet blocksize: 128 bits
- ullet 10 rounds for the 128-bit key version
- Sbox operates on 8 bits
- $\bullet\,$ diffusion layer is linear over F_{2^8}

How to make it lightweight?

Lightweight block ciphers

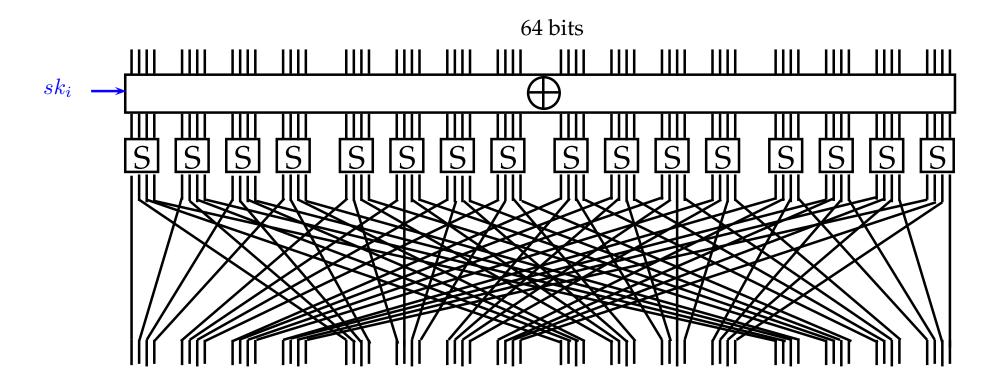
AES [Daemen-Rijmen 98][FIPS PUB 197]

- \bullet blocksize: 128 bits
- Sbox operates on 8 bits
- diffusion layer is linear over ${\rm F_{28}}$

To make it smaller in hardware:

- blocksize: 64 bits
- smaller Sbox, on 3 or 4 bits
- linear diffusion layer over a smaller alphabet
- simplified key-schedule

The usual design strategy: PRESENT [Bogdanov et al. 07]



rounds (+ a key addition)

Lightweight but secure...

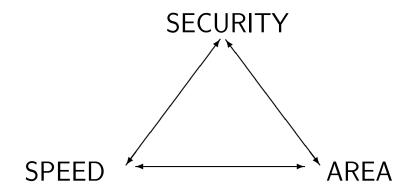
Increase the number of rounds!

- PRESENT [Bogdanov et al. 07]. 31 rounds
- LED [Guo et al. 11]: LED-64: 32 rounds, LED-128: 48 rounds
- SPECK [Beaulieu et al. 13]: SPECK64/128: 27 rounds, SPECK128/256: 34 rounds
- SIMON [Beaulieu et al. 13]:

SIMON64/128: 44 rounds, SIMON128/256: 72 rounds

Does lightweight mean "light + wait"? [Knežević et al. 12]

Does lightweight mean "light + wait"? [Knežević et al. 12]

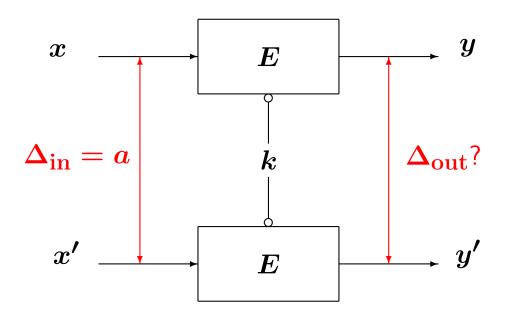


Low-latency encryption.

- Memory encryption
- VANET (Vehicular ad-hoc network)
- encryption for high-speed networking...
- \rightarrow small unrolled implementation

Find better building-blocks

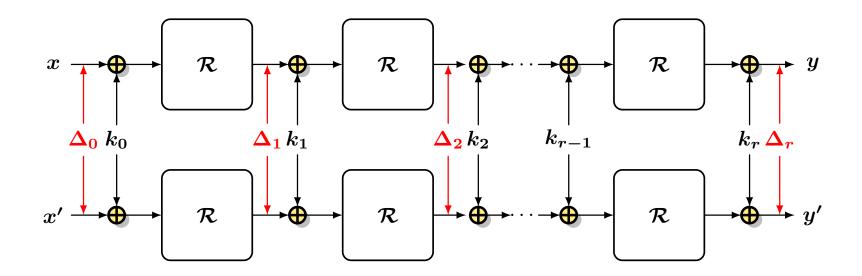
Differential cryptanalysis [Biham-Shamir 90]



Security criterion.

 $\max_{\substack{a \neq 0, b \neq 0}} \Pr_{x,k}[E_k(x \oplus a) \oplus E_k(x) = b] \text{ should be small.}$

Minimize the probability of all differential characteristics



$$\Pr_{x}\left[\mathcal{R}^{i}(x \oplus \Delta_{0}) \oplus \mathcal{R}^{i}(m) = \Delta_{i}, \forall i\right] = \prod_{i=0}^{r-1} \Pr_{x}\left[\mathcal{R}(x \oplus \Delta_{i}) \oplus \mathcal{R}(x) = \Delta_{i+1}\right]$$

Differential uniformity of $S: \mathrm{F}_2^m \to \mathrm{F}_2^m$

$$\delta(\mathbf{a}, \mathbf{b}) = \#\{x \in \mathbf{F}_2^m, S(x \oplus \mathbf{a}) \oplus S(x) = \mathbf{b}\}$$

Differential uniformity of S.

$$\delta(S) = \max_{a \neq 0, b} \delta(a, b)$$

$$\Rightarrow \max_{\Omega} \Pr(\Omega) \leq \left(rac{\delta(S)}{2^m}
ight)^{d_{\min}}$$

Theorem. [Nyberg-Knudsen 92] For any $S: \mathrm{F}_2^m o \mathrm{F}_2^m$ $\delta(S) \geq 2$.

Difference distribution table

$egin{array}{c} a \setminus b \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	0	4	2	0	2	2	0	0	0	2	0	0	0	2
2	2	2	0	2	4	0	2	0	4	0	0	0	0	0	0
3	2	0	4	0	2	0	0	0	0	6	0	0	0	2	0
4	2	0	2	4	0	0	0	2	2	0	0	2	0	0	2
5	0	4	2	0	0	0	2	2	0	0	4	2	0	0	0
6	4	0	0	0	0	4	0	4	0	0	0	0	4	0	0
7	0	2	0	0	2	2	2	0	2	2	2	0	0	2	0
8	0	4	0	0	0	4	0	0	0	0	0	0	4	0	4
9	2	2	0	2	2	0	0	0	4	0	0	2	0	2	0
10	0	0	2	2	0	2	2	2	0	2	2	0	0	0	2
11	0	0	2	0	4	0	2	2	0	0	0	6	0	0	0
12	0	2	0	0	0	2	0	0	2	2	2	2	0	4	0
13	2	0	0	0	2	0	0	0	0	2	0	0	8	2	0
14	0	0	0	0	0	0	4	0	0	0	4	0	0	4	4
15	0	0	0	4	0	0	0	4	2	2	0	2	0	0	2

 $\delta(\mathbf{a}, \mathbf{b}) = \#\{x \in \mathbf{F}_2^m, \ S(x \oplus \mathbf{a}) \oplus S(x) = \mathbf{b}\}$

Good permutations of \mathbf{F}_2^m , m even

Permutations with $\delta(S) = 2$.

The only known permutation S with an even number of variables and $\delta(S) = 2$ is for m = 6 [Dillon 09].

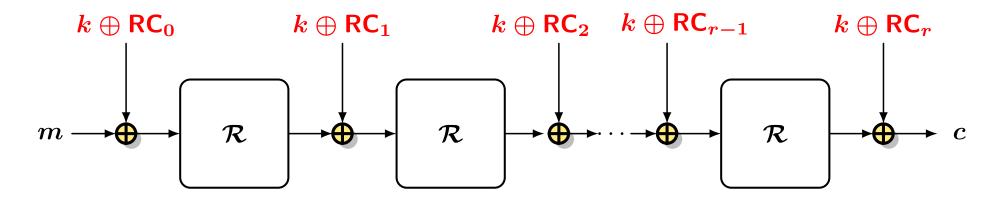
 \longrightarrow Usually, we search for permutations S with $\delta(S) = 4$.

Monomials permutations $S(x) = x^s$ over F_{2^m} .

2^i+1 , $\gcd(i,m)=2$	$m\equiv 2 mod 2$	[Gold 68]
$2^{2i}-2^i+1$, $\gcd(i,m)=2$	$m\equiv 2 mod 2$	[Kasami 71]
$2^{rac{m}{2}}+2^{rac{m}{4}}+1$	$m\equiv 4 mod 8$	[Bracken-Leander 10]
$2^m - 2$		[Lachaud-Wolfmann 90]

Use a simpler key-schedule

Lightweight key schedules

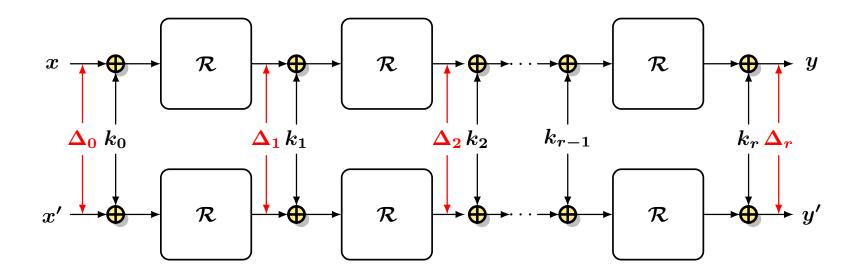


where $\mathsf{RC}_0, \mathsf{RC}_1, \ldots, \mathsf{RC}_r$ are fixed round-constants.

Examples:

- PrintCipher [Knudsen et al. 10]
- LED [Guo et al. 11]
- Prince [Borghoff et al. 12]
- Scream and iScream [Grosso et al. 14]
- Midori [Banik et al. 15]
- Skinny and Mantis [Beierle et al. 16]...

 k_0, k_1, \ldots, k_r should behave as iid random variables!!



We expect:

$$\Pr_{x}\left[\mathcal{R}^{i}(x \oplus \Delta_{0}) \oplus \mathcal{R}^{i}(m) = \Delta_{i}, \forall i\right] = \prod_{i=0}^{r-1} \Pr_{x}\left[\mathcal{R}(x \oplus \Delta_{i}) \oplus \mathcal{R}(x) = \Delta_{i+1}\right]$$

Invariant attacks [Todo-Leander-Sasaki 16]

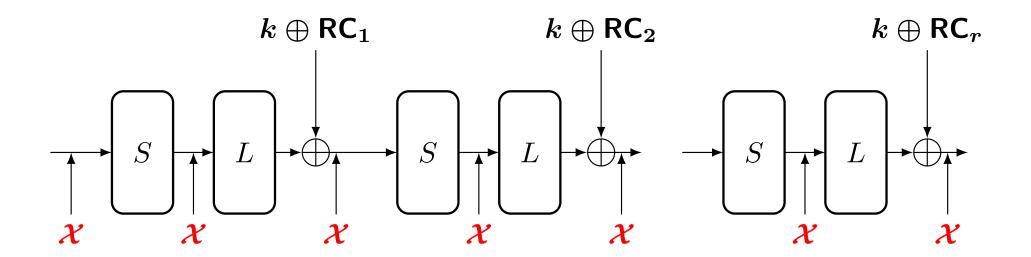
Principle:

Exhibit a set \mathcal{X} of inputs invariant under E_k for many weak keys.

Ex: Invariant subspace for Midori64 [Guo et al. 16]

For any 128-bit key $k\in\{0,1\}^{32}$, $\mathcal{X}=\{8,9\}^{16}$ is invariant under E_k .

 Using the same invariant for all layers in an iterated cipher



Condition on the existence of invariant sets

$D := \{(\mathsf{RC}_i \oplus \mathsf{RC}_j), \ 0 \leq i < j \leq r\}$

 $W_L(D):=$ smallest subspace invariant under L which contains D .

Problem.

Is there a set $\mathcal{X} \subset \{0,1\}^n$ such that $S(\mathcal{X}) = \mathcal{X}$ and \mathcal{X} is invariant under addition of any element in $W_L(D)$?

Condition on the existence of invariant sets

$D := \{(\mathsf{RC}_i \oplus \mathsf{RC}_j), \ 0 \leq i < j \leq r\}$

 $W_L(D):=$ smallest subspace invariant under L which contains D .

Problem.

Is there a set $\mathcal{X} \subset \{0,1\}^n$ such that $S(\mathcal{X}) = \mathcal{X}$ and \mathcal{X} is invariant under addition of any element in $W_L(D)$?

No if $W_L(D) = \{0,1\}^n$

Some lightweight ciphers with n = 64

Skinny-64-64.

$D = \{\mathsf{RC}_1 \oplus \mathsf{RC}_{17}, \ \mathsf{RC}_2 \oplus \mathsf{RC}_{18}, \ \mathsf{RC}_3 \oplus \mathsf{RC}_{19}, \ \mathsf{RC}_4 \oplus \mathsf{RC}_{20}, \ \mathsf{RC}_5 \oplus \mathsf{RC}_{21}\}$ $\dim W_L(D) = 64$

The round-constants and L guarantee that the attack does not apply.

Prince.

 $D = \{\mathsf{RC}_1 \oplus \mathsf{RC}_2, \ \mathsf{RC}_1 \oplus \mathsf{RC}_3, \ \mathsf{RC}_1 \oplus \mathsf{RC}_4, \ \mathsf{RC}_1 \oplus \mathsf{RC}_5, \ lpha \}.$ $\dim W_L(D) = 56$

Midori-64.

$$W_L(D) = \{0000, 0001\}^{16}, \ \dim W_L(D) = 16$$

Maximizing the dimension of $W_L(d)$

$$W_L(d) = \langle L^t(d), t \in \mathbb{N}
angle \; .$$

Theorem. There exists d such that $\dim W_L(d) = k$ if and only if k is the degree of a divisor of the minimal polynomial of L.

$$\Rightarrow \max_{d \in \mathbb{F}_2^n} \dim W_L(d) = \deg \operatorname{Min}_L$$

For some lightweight ciphers

LED.

 ${\sf Min}_L(X) = (X^8 + X^7 + X^5 + X^3 + 1)^4 (X^8 + X^7 + X^6 + X^5 + X^2 + X + 1)^4$ There exist some d such that $\dim W_L(d) = 64$

Skinny-64.

$$\mathsf{Min}_L(X) = X^{16} + 1 = (X+1)^{16}$$

There exist some d such that $\dim W_L(d) = k$ for any $1 \le k \le 16$.

Prince.

$$egin{array}{rcl} {\sf Min}_L(X) &=& X^{20} + X^{18} + X^{16} + X^{14} + X^{12} + X^8 + X^6 + X^4 + X^2 + 1 \ && {
m max}_d \dim W_L(d) = 20 \end{array}$$

Midori.

$$\operatorname{Min}_{L}(X) = (X+1)^{6} \Rightarrow \max_{d} \dim W_{L}(d) = 6$$

Rational canonical form

When $deg(Min_L) = n$, there is a basis for which the matrix of L is

$$C(\mathsf{Min}_L) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & 0 & \dots & 1 \\ p_0 & p_1 & p_2 & \dots & p_{n-1} \end{pmatrix}$$

More generally, there is a basis for which the matrix of L is

$$\left(egin{array}{cccc} C(Q_1) & & & & \ & & C(Q_2) & & & \ & & & \ddots & & \ & & & & C(Q_\ell) \end{array}
ight)$$

for ℓ polynomials $Q_{\ell} \mid Q_{\ell-1} \mid \cdots \mid Q_1 = \mathsf{Min}_L$ called the invariant factors of L.

Example

For Prince.

$$\begin{aligned} \mathsf{Min}_L(X) &= X^{20} + X^{18} + X^{16} + X^{14} + X^{12} + X^8 + X^6 + X^4 + X^2 + 1 \\ &= (X^4 + X^3 + X^2 + X + 1)^2 (X^2 + X + 1)^4 (X + 1)^4 \end{aligned}$$

8 invariant factors:

$$egin{aligned} Q_1(X) &= Q_2(X) \ &= X^{20} + X^{18} + X^{16} + X^{14} + X^{12} + X^8 + X^6 + X^4 + X^2 + 1 \ Q_3(X) &= Q_4(X) = X^8 + X^6 + X^2 + 1 = (X+1)^4 (X^2 + X + 1)^2 \ Q_5(X) &= Q_6(X) = Q_7(X) = Q_8(X) = (X+1)^2 \end{aligned}$$

Maximizing the dimension of $W_L(d_1,\ldots,d_t)$

Theorem. Let Q_1, Q_2, \ldots, Q_ℓ be the ℓ invariant factors of L.

For any $t \leq \ell$, $\max_{d_1,\ldots,d_t} \dim W_L(d_1,\ldots,d_t) = \sum_{i=1}^t \deg Q_i.$

We need ℓ elements to get $W_L(D) = \{0,1\}^n$.

For Prince.

For t = 5, max dim $W_L(d_1, \ldots, d_5) = 20 + 20 + 8 + 8 + 2 = 58$

We need 8 elements to get the full space.

Conclusions

- risky
- standardization process launched by NIST

Use mathematics to clarify the design criteria!