

Y.Y Quad

Basis

Rank

QAN

Coeff

Bijectio

Disation

Example

Theoren

Remark

Equival

List

 $\operatorname{Problem}$

Thanks

Classification of quadratic APN functions with coefficients in \mathbb{F}_2

By Yuyin Yu yuyuyin@163.com Joint Work with Lilya Budaghyan, Nikolay Kaleyski and Yongqiang Li

School of Mathematics and Information Science, Guangzhou University

Florence, Italy - June 20, 2019

APN

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

Bijectior

Bijection

Example

Theorem

Remark

Equival

List

Problem

Thanks

 $F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$

 APN

Y. Yu

Quad

APN CO

Basis

Rank

QAM

Coeff

Bijection

Bijection

Example

Theorem

Remarl

Equiva

List

Problem

Thanks

$$F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$$

• $c_{i,t} \in \{0,1\}.$

 APN

Y. Yu

- APN CC
- Basis
- Rank
- QAM
- Coeff
- Bijectio
- Ditention
- Example
- Theorem
- Remark
- Equival
- List
- Problem
- Thanks

$$F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$$

- $c_{i,t} \in \{0,1\}.$
- No linear or constant terms.

APN

Y. Yu

- APN CO
- Basis
- Rank
- QAM
- Coeff
- Bijection
- Bijection
- Example
- Theorem
- Remark
- Equival
- List
- Problem
- Thanks

$$F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$$

- $c_{i,t} \in \{0,1\}.$
- No linear or constant terms.
- APN Property : When it is APN?

APN

Y. Yu

- APN C
- Basis
- Rank
- QAM
- Coeff
- Bijection
- Bijection
- Example
- Theoren
- Remark
- Equival
- List
- Problem
- Thanks

$$F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$$

- $c_{i,t} \in \{0,1\}.$
- No linear or constant terms.
- APN Property : When it is APN?
- Construction : Matrix method.

APN

Y. Yu

- APN C
- Basis
- Rank
- QAM
- Coeff
- Rijection 1
- Bijection
- Example
- Theoren
- Remark
- Equival
- List
- $\mathbf{Problem}$
- Thanks

$$F(x) = \sum_{1 \le t < i \le n} c_{i,t} x^{2^{i-1} + 2^{t-1}} \in \mathbb{F}_2[x].$$

- $c_{i,t} \in \{0,1\}.$
- No linear or constant terms.
- APN Property : When it is APN?
- Construction : Matrix method.
- Classification : Coding theory , Magma.

APN & CCZ

APN

Y. Yu

Quad

AI N 00

Basis

Rank

OAM

Coeff

Bijection

D::....

Example

Theorer

Remark

Equival.

List

Thanks

Definition (APN)

A mapping $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is an APN (Almost perfect nonlinear) function, if the equation F(x+a) + F(x) = b has at most two solutions for any $a \in \mathbb{F}_{2^n}^{\star}$ and $b \in \mathbb{F}_{2^n}$.

Definition (CCZ-equivalence)

Suppose F and T are two functions from \mathbb{F}_{2^n} to \mathbb{F}_{2^n} , then Fand T are **CCZ-equivalent** (Carlet-Charpin-Zinoviev equivalent) if there is an affine permutation which maps G_F to G_T , where $G_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ is the graph of F, and G_T is the graph of T.

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

Bijectio

Dijection

Example

Theorem

Remark

Equiva

List

Problem

Thanks

Suppose $\{\alpha_0, \alpha_1, \ldots, \alpha_{n-1}\}$ is a normal basis of \mathbb{F}_{2^n} over \mathbb{F}_2 , such that $\alpha_{i+1} = \alpha_i^2$ for $0 \le i \le n-1$.

Define

$$M \in \mathbb{F}_{2^n}^{n \times n}$$

such that

$$M[i, u] = \alpha_u^{2^i}.$$

Y. Yu

Quad

Basis

Rank

OAN

 Coeff

Bijectio

Example

Theorem

Equival

r robiem

Thanks

Definition (Rank)

Let $\eta_1, \eta_2, \ldots, \eta_m$ be *m* elements on \mathbb{F}_{2^n} $(m, n \ge 1)$, and $B = (\eta_1, \eta_2, \ldots, \eta_m) \in \mathbb{F}_{2^n}^m$.

$$\operatorname{Span}(B) = \operatorname{Span}(\eta_1, \eta_2, \dots, \eta_m)$$

denotes the subspace spanned by $\{\eta_1, \eta_2, \ldots, \eta_m\}$ over \mathbb{F}_2 . Rank_{\mathbb{F}_2} $\{\eta_1, \eta_2, \ldots, \eta_m\}$ is the dimension of Span(B) over \mathbb{F}_2 , which we call the **rank** of B (over \mathbb{F}_2).

Y. Yu

Quad

- APN CC
- Basis
- Rank

QAM

- Coeff Bijectio Bijectio Example Theorem
- Remark
- Equival
- List
- Problem
- Thanks

Definition (QAM)

Let $H = (h_{u,v})_{n \times n}$ be an $n \times n$ matrix defined on \mathbb{F}_{2^n} . the matrix H is called a **QAM** (quadratic APN matrix) if 1) H is summetric and the elements in its main diagonal are

- 1) H is symmetric and the elements in its main diagonal are all zeros.
- 2) Every nonzero linear combination of the n rows (or "columns" since H is symmetric) of H has rank n-1.

Coefficient matrix

APN

Y. Yu

Quad

APN CO

Basis

Rank

QAM

Coeff

Bijection1 Bijection2 Example Theorem Remark Equival. List

Problem

Thanks

Let $F(x) = \sum_{0 \le t < i \le n-1} c_{i,t} x^{2^i + 2^t} \in \mathbb{F}_{2^n}[x]$, define an $n \times n$ matrix C_F such that

$$C_F[t,i] = C_F[i,t] = c_{i,t}$$

for $0 \le t < i \le n-1$ and

 $C_F[i,i] = 0$

for $0 \le i \le n-1$.

APN

Y. Yu

Quad APN C Basis

Rank

QAM

Coeff

Bijection1 Bijection2 Example Theorem Remark

List

Problem

Thanks

 Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions. Designs, Codes and Cryptography, vol. 73, no. 2, pp. 587-600, 2014.

Theorem

Let $F(x) = \sum_{1 \leq t < i \leq n} c_{i,t} x^{2^{i-1}+2^{t-1}} \in \mathbb{F}_{2^n}[x]$, C_F be defined as above, and $H = M^t C_F M$. Then, $\delta(F) \leq 2^k$ if and only if any nonzero linear combination of the *n* rows of *H* has rank at least n - k. In particular, *F* is APN on \mathbb{F}_{2^n} if and only if *H* is a QAM.

APN

Y. Yu

Quad APN CC Basis Rank QAM Coeff **Bijectior**

Example

Remark

Equival

List

 $\mathbf{Problem}$

Thanks

 Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions.Designs, Codes and Cryptography, vol. 73, no. 2, pp. 587-600, 2014.

Theorem

Let $F(x) = \sum_{1 \leq t < i \leq n} c_{i,t} x^{2^{i-1}+2^{t-1}} \in \mathbb{F}_{2^n}[x]$, C_F be defined as above, and $H = M^t C_F M$. Then, $\delta(F) \leq 2^k$ if and only if any nonzero linear combination of the n rows of H has rank at least n - k. In particular, F is APN on \mathbb{F}_{2^n} if and only if H is a QAM.

The correspondence between quadratic homogeneous APN functions and QAMs is one to one.

APN

Y. Yu

Quad APN CC: Basis Rank QAM Coeff **Bijection** Bijection Example Theorem R conact

Equival

List

Problem

Thanks

 Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN functions. Designs, Codes and Cryptography, vol. 73, no. 2, pp. 587-600, 2014.

Theorem

Let $F(x) = \sum_{1 \leq t < i \leq n} c_{i,t} x^{2^{i-1}+2^{t-1}} \in \mathbb{F}_{2^n}[x]$, C_F be defined as above, and $H = M^t C_F M$. Then, $\delta(F) \leq 2^k$ if and only if any nonzero linear combination of the *n* rows of *H* has rank at least n - k. In particular, *F* is APN on \mathbb{F}_{2^n} if and only if *H* is a QAM.

The correspondence between quadratic homogeneous APN functions and QAMs is one to one.

According to this result, constructing quadratic homogeneous APN functions is equal to construct QAMs.

APN

Y. Yu

Quad APN C Basis Rank QAM

COEII

Bijection

Bijection2

m

Remark

Equival

List

Problem

Thanks

Theorem

Let $F(x) = \sum_{0 \le t < i \le n-1} c_{i,t} x^{2^i + 2^t}$, C_F be defined as above. Define fine $H = M^t C_F M.$

Then $H[u+1, v+1] = H[u, v]^2$ for $0 \le v, u \le n-1$ if and only if $c_{i,t} \in \mathbb{F}_2$ for $0 \le t < i \le n-1$.

APN

Y. Yu

Equival

List

Problem

Thanks

Theorem

Let $F(x) = \sum_{0 \le t < i \le n-1} c_{i,t} x^{2^i + 2^t}$, C_F be defined as above. Define fine $H = M^t C_F M.$

Then $H[u+1, v+1] = H[u, v]^2$ for $0 \le v, u \le n-1$ if and only if $c_{i,t} \in \mathbb{F}_2$ for $0 \le t < i \le n-1$.

Proposition

F(x) is a quadratic homogeneous APN function with coefficients in \mathbb{F}_2 if and only if H is an QAM such that $H[i+1, j+1] = H[i, j]^2$ for any $0 \le i, j < n$.

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

Bijection

Bijection2

Example

Theorem

Remark

Equiva

List

Problem

Thanks

Suppose n = 6. If $F(x) \in \mathbb{F}_{2^6}[x]$ is quadratic homogeneous APN function with coefficients in \mathbb{F}_2 , then its corresponding matrix H must be a QAM such that

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

Bijectio

Rijection⁴

Example

Theoren Remark

Equival.

List

Problem

Thanks

Suppose n = 6. If $F(x) \in \mathbb{F}_{2^6}[x]$ is quadratic homogeneous APN function with coefficients in \mathbb{F}_2 , then its corresponding matrix H must be a QAM such that

$$H = \begin{pmatrix} 0 & a & b & c & b^{2^4} & a^{2^5} \\ a & 0 & a^2 & b^2 & c^2 & b^{2^5} \\ b & a^2 & 0 & a^{2^2} & b^{2^2} & c^{2^2} \\ c & b^2 & a^{2^2} & 0 & a^{2^3} & b^{2^3} \\ b^{2^4} & c^2 & b^{2^2} & a^{2^3} & 0 & a^{2^4} \\ a^{2^5} & b^{2^5} & c^{2^2} & b^{2^3} & a^{2^4} & 0 \end{pmatrix}$$

Note that $H[u+1, v+1] = H[u, v]^2$ for all u, v.

APN

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

Bijection

Bijection2

Example

Theorem

Remark

Equiva

List

Problem

Thanks

(i) According to
$$H[u+1, v+1] = H[u, v]^2$$
, we have $c = c^{2^3}$
(Let $u = 2, v = 5$, then $H[3, 6] = H[6, 3] = H[0, 3] = c = H[2, 5]^2 = c^{2^3}$);

APN

Y. Yu

Quad APN C Basis

Rank

QAM

Coeff

Bijection

Bijection2

Example

Theorem

Remark

Equival

List

Problem

Thanks

(i) According to $H[u+1, v+1] = H[u, v]^2$, we have $c = c^{2^3}$ (Let u = 2, v = 5, then $H[3, 6] = H[6, 3] = H[0, 3] = c = H[2, 5]^2 = c^{2^3}$);

(ii) Let $\lambda = a + b + c + b^{2^4} + a^{2^4}$, then Trace $(\lambda) = 0$; If H is a QAM, then $\operatorname{Rank}_{\mathbb{F}_2}\{\lambda, \lambda^2, \lambda^{2^2}, \lambda^{2^3}, \lambda^{2^4}, \lambda^{2^5}\} = 5$.

APN

Y. Yu

(i) According to $H[u+1, v+1] = H[u, v]^2$, we have $c = c^{2^3}$ (Let u = 2, v = 5, then $H[3, 6] = H[6, 3] = H[0, 3] = c = H[2, 5]^2 = c^{2^3}$);

(ii) Let $\lambda = a + b + c + b^{2^4} + a^{2^4}$, then $\operatorname{Trace}(\lambda) = 0$; If H is a QAM, then $\operatorname{Rank}_{\mathbb{F}_2}\{\lambda, \lambda^2, \lambda^{2^2}, \lambda^{2^3}, \lambda^{2^4}, \lambda^{2^5}\} = 5$.

(iii) Let $\{\alpha, \alpha^2, \alpha^{2^2}, \alpha^{2^3}, \alpha^{2^4}, \alpha^{2^5}\}$ be a normal basis of \mathbb{F}_{2^n} over \mathbb{F}_2 . Suppose $a = \sum_{i=0}^5 a_i \alpha^{2^i}$, $b = \sum_{i=0}^5 b_i \alpha^{2^i}$, $c = \sum_{i=0}^5 c_i \alpha^{2^i}$, with $a_i, b_i, c_i \in \mathbb{F}_2$. Let $H[i, \cdot]$ and $H[\cdot, j]$ denote the *i*-th row and *j*th column of *H*, respectively. Identify A_0 with $H[\cdot, 0]$ as follows:

 APN

Y. Yu

$A_0 =$	$ \left(\begin{array}{c} 0\\ a_0\\ b_0\\ c_0\\ b_2\\ a_1 \end{array}\right) $	$egin{array}{c} 0 \\ a_1 \\ b_1 \\ c_1 \\ b_3 \\ a_2 \end{array}$	$egin{array}{c} 0 \\ a_2 \\ b_2 \\ c_2 \\ b_4 \\ a_3 \end{array}$	$egin{array}{c} 0 \\ a_3 \\ b_3 \\ c_3 \\ b_5 \\ a_4 \end{array}$	$egin{array}{c} 0 \\ a_4 \\ b_4 \\ c_4 \\ b_0 \\ a_5 \end{array}$	$\begin{array}{c} 0\\ a_5\\ b_5\\ c_5\\ b_1\\ a_0 \end{array}$	$ = H[\cdot, 0] = \begin{pmatrix} 0 \\ a \\ b \\ c \\ b^{2^4} \\ a^{2^5} \end{pmatrix}. $ (2)	1)
$A_1 =$	$\left(\begin{array}{c}a_0\\0\\a_5\\b_5\\c_5\\b_1\end{array}\right)$	$egin{array}{c} a_1 \\ 0 \\ a_0 \\ b_0 \\ c_0 \\ b_2 \end{array}$	$a_2 \\ 0 \\ a_1 \\ b_1 \\ c_1 \\ b_3$	$a_3 \\ 0 \\ a_2 \\ b_2 \\ c_2 \\ b_4$	$egin{array}{c} a_4 \ 0 \ a_3 \ b_3 \ c_3 \ b_5 \end{array}$	$egin{array}{c} a_5 \ 0 \ a_4 \ b_4 \ c_4 \ b_0 \end{array}$	$ = H[\cdot, 1] = \begin{pmatrix} a \\ 0 \\ a^2 \\ b^2 \\ c^2 \\ b^{2^5} \end{pmatrix}. (2)$	2)

Thanks

APN

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Coeff

D::----

Example

-Theorer

Remark

Equiva

List

Problem

Thanks

It can be seen that

$$A_1 = PA_0P^t, (3)$$

where $P = (e_1, e_2, e_3, e_4, e_5, e_0)(e_i$ is a column vector with $e_i[i] = 1$, and $e_i[j] = 0$ for $j \neq i$), and P^t is the transpose of P.

APN

Y. Yu

List

Problem

Thanks

Similar as (1) and (2), we define A_2, A_3, A_4 and A_5 . Therefore, similar as (3) we can get

$$A_{2} = PA_{1}P^{t} = P^{2}A_{0}(P^{2})^{t},$$

$$A_{3} = PA_{2}P^{t} = P^{3}A_{0}(P^{3})^{t},$$

$$A_{4} = PA_{3}P^{t} = P^{4}A_{0}(P^{5})^{t},$$

$$A_{5} = PA_{4}P^{t} = P^{5}A_{0}(P^{5})^{t}.$$
(4)

APN

Y. Yu

Similar as (1) and (2), we define A_2, A_3, A_4 and A_5 . Therefore, similar as (3) we can get

$$A_{2} = PA_{1}P^{t} = P^{2}A_{0}(P^{2})^{t},$$

$$A_{3} = PA_{2}P^{t} = P^{3}A_{0}(P^{3})^{t},$$

$$A_{4} = PA_{3}P^{t} = P^{4}A_{0}(P^{5})^{t},$$

$$A_{5} = PA_{4}P^{t} = P^{5}A_{0}(P^{5})^{t}.$$
(4)

Based on Eq (3) and Eq (4), we have H is a QAM if and only if the rank of $\sum_{i=0}^{5} \mu_i P^i A_0(P^i)^t$ is 5 for all $(\mu_0, \mu_1, \cdots, \mu_5) \neq 0 \in \mathbb{F}_2^5$.

Thanks

Y. Yu

Quad APN CO Basis Rank QAM Coeff

Bijectio

_ .

Theorem

I temark

List

Problem

Thanks

Theorem

Suppose $H \in GF(2^n)^{n \times n}$, H[0,0] = 0, H[u,v] = H[v,u]for $0 \le v < u \le n-1$, and $H[u+1,v+1] = H[u,v]^2$ for $0 \le v, u \le n-1$. Let $P = (e_1, e_2, \cdots, e_{n-2}, e_{n-1}, e_0)$, where e_i is a column vector with $e_i[i] = 1$, and $e_i[j] = 0$ for $j \ne i$. Define a matrix $A_0 \in \mathbb{F}_2^{n \times n}$ such that $H[i,0] = \sum_{k=0}^{n-1} A_0[i,k]\alpha^{2^k}$. Then H is a QAM if and only if the rank of $\sum_{i=0}^{n-1} \mu_i P^i A_0(P^i)^t$ is n-1 for all $(\mu_0, \mu_1, \cdots, \mu_{n-1}) \ne 0 \in$ GF $(2)^n$. (P^t is the transpose of P).

Y. Yu

Quad APN CO Basis Rank QAM Coeff

Dijection

Example

Theorem

Remark

Equival.

List

Problem

Thanks

As a matter of fact, the condition $H[u+1, v+1] = H[u, v]^2$ for $0 \le v, u \le n-1$ has assured that there is only one half elements of $H[\cdot, 0]$ is uncertain, and it can be divided into two cases:

- i) when n = 2m, then H[0,0] = 0, $H[i,0] \in \mathbb{F}_{2^n}$ for 0 < i < m, $H[m,0] = H[m,0]^{2^m}$, and $H[i,0] = H[n-i,0]^{2^i}$ for m < i < n.
- ii) when n = 2m + 1, then H[0,0] = 0, $H[i,0] \in \mathbb{F}_{2^n}$ for $0 < i \le m$, and $H[i,0] = H[n-i,0]^{2^i}$ for m < i < n.

Equivalence

APN

Y. Yu

Quad

APN C Basis

Bank

0 A M

Example

Theoren

Remark

Equival.

List

Problem

Thanks

Proposition

Suppose $f_1 \in \mathbb{F}_{2^n}[x]$, with coefficients in \mathbb{F}_2 , and its corresponding QAM is H. Define a new matrix H' such that $H'[i, j] = H[i, j]^2$ for any $0 \leq i, j < n$. Then H' is also a QAM, and its corresponding function $f_2 \in \mathbb{F}_2[x]$, and f_1 is EA-equivalent to f_2 .

List for n = 4, 5, 6

Y. Yu

Quad

APN CO

Basis

Rank

QAM

Coeff

Bijectior

Bijection

Exampl

Theorem

Remark

Equival

List

 $\operatorname{Problem}$

Thanks

n	Functions
4	x^3
5	x^3, x^5
6	x^3

List for n = 7

 x^3 r^9 x^5 $x^3 + x^9 + x^{10} + x^{66}$ $x^5 + x^{18} + x^{34}$ $r^3 + r^6 + r^{20}$ $x^3 + x^{17} + x^{20} + x^{34} + x^{66}$ $r^{3} + r^{17} + r^{33} + r^{34}$ $x^{3} + x^{5} + x^{10} + x^{33} + x^{34}$ $x^3 + x^9 + x^{18} + x^{66}$ $x^{3} + x^{12} + x^{17} + x^{33}$ $x^3 + x^{20} + x^{34} + x^{66}$ $x^3 + x^{12} + x^{40} + x^{72}$ $x^{3} + x^{6} + x^{34} + x^{40} + x^{72}$ $x^{3} + x^{5} + x^{6} + x^{12} + x^{33} + x^{34}$

15 CCZ-inequivalent classes.

List for n = 8

APN

Y. Yu

Quad

р. .

Bank

QAM

Coeff

Bijoctiv

Example

Theoren

Equival

List

Problem

Thanks

$$\begin{array}{c} x^{3} \\ x^{9} \\ x^{3} + x^{6} + x^{72} \\ x^{3} + x^{6} + x^{144} \\ x^{3} + x^{6} + x^{68} + x^{80} + x^{132} + x^{160} \\ x^{3} + x^{5} + x^{18} + x^{40} + x^{66} \\ x^{3} + x^{12} + x^{40} + x^{66} + x^{130} \end{array}$$

7 CCZ-inequivalent classes.

List for n=9

Y. Yu

Quad

APN C

Basis

Rank

OAM

Coeff

Bijectio

. .

TL

Remark

Equival

List

 $\mathbf{Problem}$

Thanks

 $\begin{array}{c} x^{3} \\ x^{5} \\ x^{17} \\ x^{257} + x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} \\ x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} + x^{3} \\ x^{136} + x^{132} + x^{96} + x^{80} + x^{36} + x^{34} + x^{18} + x^{17} + x^{12} \\ x^{264} + x^{160} + x^{144} + x^{132} + x^{80} + x^{72} + x^{66} + x^{40} + x^{17} \\ x^{288} + x^{272} + x^{264} + x^{160} + x^{144} + x^{130} + x^{48} + x^{34} \end{array}$

8 CCZ-inequivalent classes.

List for n=9

Y. Yu

Quad

APN C

Basis

Rank

OAM

Coeff

Bijectio

Rijection

Remari

Equival

List

Problem

Thanks

 $\begin{array}{c} x^{3} \\ x^{5} \\ x^{17} \\ x^{257} + x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} \\ x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} + x^{3} \\ x^{136} + x^{132} + x^{96} + x^{80} + x^{36} + x^{34} + x^{18} + x^{17} + x^{12} \\ x^{264} + x^{160} + x^{144} + x^{132} + x^{80} + x^{72} + x^{66} + x^{40} + x^{17} \\ x^{288} + x^{272} + x^{264} + x^{160} + x^{144} + x^{130} + x^{48} + x^{34} \end{array}$

8 CCZ-inequivalent classes.

Not finished!

List for n=9

Y. Yu

Quad

APN (

Basis

Rank

OAM

Cooff

Drampi

Theorer

Remark

Equiva

List

Problem

Thanks

 $\begin{array}{c} x^{3} \\ x^{5} \\ x^{17} \\ x^{257} + x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} \\ x^{144} + x^{130} + x^{72} + x^{65} + x^{18} + x^{9} + x^{3} \\ x^{136} + x^{132} + x^{96} + x^{80} + x^{36} + x^{34} + x^{18} + x^{17} + x^{12} \\ x^{264} + x^{160} + x^{144} + x^{132} + x^{80} + x^{72} + x^{66} + x^{40} + x^{17} \\ x^{288} + x^{272} + x^{264} + x^{160} + x^{144} + x^{130} + x^{48} + x^{34} \end{array}$

8 CCZ-inequivalent classes.

Not finished!

Nothing new for $n \leq 8$.

[2] Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81

Open problems

APN

Y. Yu

Quad APN C Basis Rank

a.

Example

Theorem

Remark

Equival

List

 $\mathbf{Problem}$

Thanks

Conjecture

Given a quadratic APN function $f_1 \in \mathbb{F}_{2^n}[x]$, with coefficients in \mathbb{F}_2 , then it is CCZ-equivalent to another quadratic APN function $f_2 \in \mathbb{F}_{2^n}[x]$, with coefficients in \mathbb{F}_2 and has at most n nonzero terms.

Open problems

APN

Y. Yu

Quad APN C Basis Rank QAM

Coeff

Bijection

Bijection

Example

Theorem

D. . 1

Equiva.

List

Problem

Thanks

Conjecture

Given a quadratic APN function $f_1 \in \mathbb{F}_{2^n}[x]$, with coefficients in \mathbb{F}_2 , then it is CCZ-equivalent to another quadratic APN function $f_2 \in \mathbb{F}_{2^n}[x]$, with coefficients in \mathbb{F}_2 and has at most n nonzero terms.

Problem

Constructing quadratic APN functions $f(x) \in \mathbb{F}_2[x]$ in \mathbb{F}_{2^n} for infinite n.

Y. Yu

Quad

APN CC

Basis

Rank

QAM

Cooff

Rijection

Silection?

Example

Theorem

Remark

Equival

List

Problem

Thanks

Wisdom in the mind is better than money in the hand.