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Quadratic homogeneous APN functions in F2[x]

F (x) =
∑

1≤t<i≤n
ci,tx

2i−1+2t−1 ∈ F2[x].

ci,t ∈ {0, 1}.
No linear or constant terms.

APN Property : When it is APN?

Construction : Matrix method.

Classification : Coding theory , Magma.
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APN & CCZ

Definition (APN)

A mapping F : F2n → F2n is an APN (Almost perfect non-
linear) function, if the equation F (x + a) + F (x) = b has at
most two solutions for any a ∈ F?

2n and b ∈ F2n.

Definition (CCZ-equivalence)

Suppose F and T are two functions from F2n to F2n, then F
and T are CCZ-equivalent (Carlet-Charpin-Zinoviev equiv-
alent) if there is an affine permutation which maps GF to GT ,
where GF = {(x, F (x)) : x ∈ F2n} is the graph of F , and GT

is the graph of T .
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Basis

Suppose {α0, α1, . . . , αn−1} is a normal basis of F2n over F2,
such that αi+1 = α2

i for 0 ≤ i ≤ n− 1.

Define
M ∈ Fn×n

2n

such that
M [i, u] = α2i

u .
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Rank

Definition (Rank)

Let η1, η2, . . . , ηm be m elements on F2n (m,n ≥ 1), and B =
(η1, η2, . . . , ηm) ∈ Fm

2n.

Span(B) = Span(η1, η2, . . . , ηm)

denotes the subspace spanned by {η1, η2, . . . , ηm} over F2.
RankF2{η1, η2, . . . , ηm} is the dimension of Span(B) over F2,
which we call the rank of B ( over F2).
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QAM

Definition (QAM)

Let H = (hu,v)n×n be an n × n matrix defined on F2n. the
matrix H is called a QAM (quadratic APN matrix) if
1) H is symmetric and the elements in its main diagonal are
all zeros.
2) Every nonzero linear combination of the n rows (or
“columns” since H is symmetric) of H has rank n− 1.
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Coefficient matrix

Let F (x) =
∑

0≤t<i≤n−1
ci,tx

2i+2t ∈ F2n [x], define an n × n

matrix CF such that

CF [t, i] = CF [i, t] = ci,t

for 0 ≤ t < i ≤ n− 1 and

CF [i, i] = 0

for 0 ≤ i ≤ n− 1.
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Bijection 1

[1] Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic APN func-

tions.Designs, Codes and Cryptography, vol. 73, no. 2, pp. 587-600, 2014.

Theorem

Let F (x) =
∑

1≤t<i≤n
ci,tx

2i−1+2t−1 ∈ F2n [x], CF be defined as

above, and H = M tCFM . Then, δ(F ) ≤ 2k if and only if
any nonzero linear combination of the n rows of H has rank
at least n− k. In particular, F is APN on F2n if and only if
H is a QAM.

The correspondence between quadratic homogeneous APN
functions and QAMs is one to one.

According to this result, constructing quadratic homogeneous
APN functions is equal to construct QAMs.
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Bijection 2

Theorem

Let F (x) =
∑

0≤t<i≤n−1
ci,tx

2i+2t, CF be defined as above. De-

fine
H = M tCFM.

Then H[u + 1, v + 1] = H[u, v]2 for 0 ≤ v, u ≤ n − 1 if and
only if ci,t ∈ F2 for 0 ≤ t < i ≤ n− 1.

Proposition

F (x) is a quadratic homogeneous APN function with co-
efficients in F2 if and only if H is an QAM such that
H[i+ 1, j + 1] = H[i, j]2 for any 0 ≤ i, j < n.
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Quadratic homogeneous APN functions in F2[x] - Example

Suppose n = 6. If F (x) ∈ F26 [x] is quadratic homogeneous
APN function with coefficients in F2, then its corresponding
matrix H must be a QAM such that

H =



0 a b c b2
4

a2
5

a 0 a2 b2 c2 b2
5

b a2 0 a2
2

b2
2

c2
2

c b2 a2
2

0 a2
3

b2
3

b2
4

c2 b2
2

a2
3

0 a2
4

a2
5

b2
5

c2
2

b2
3

a2
4

0


.

Note that H[u+ 1, v + 1] = H[u, v]2 for all u, v.



APN

Y. Yu

Quad

APN CCZ

Basis

Rank

QAM

Coeff

Bijection1

Bijection2

Example

Theorem

Remark

Equival.

List

Problem

Thanks

Quadratic homogeneous APN functions in F2[x] - Example

Suppose n = 6. If F (x) ∈ F26 [x] is quadratic homogeneous
APN function with coefficients in F2, then its corresponding
matrix H must be a QAM such that

H =



0 a b c b2
4

a2
5

a 0 a2 b2 c2 b2
5

b a2 0 a2
2

b2
2

c2
2

c b2 a2
2

0 a2
3

b2
3

b2
4

c2 b2
2

a2
3

0 a2
4

a2
5

b2
5

c2
2

b2
3

a2
4

0


.

Note that H[u+ 1, v + 1] = H[u, v]2 for all u, v.



APN

Y. Yu

Quad

APN CCZ

Basis

Rank

QAM

Coeff

Bijection1

Bijection2

Example

Theorem

Remark

Equival.

List

Problem

Thanks

Example for n = 6

(i) According to H[u + 1, v + 1] = H[u, v]2, we have c = c2
3

(Let u = 2, v = 5, then H[3, 6] = H[6, 3] = H[0, 3] = c =
H[2, 5]2 = c2

3
);

(ii) Let λ = a+ b+ c+ b2
4

+ a2
4
, then Trace(λ) = 0; If H is

a QAM, then RankF2{λ, λ2, λ2
2
, λ2

3
, λ2

4
, λ2

5} = 5.

(iii) Let {α, α2, α22
, α23

, α24
, α25} be a normal basis of F2n

over F2. Suppose a =
∑5

i=0 aiα
2i , b =

∑5
i=0 biα

2i , c =∑5
i=0 ciα

2i , with ai, bi, ci ∈ F2. Let H[i, ·] and H[·, j] de-
note the i-th row and jth column of H,respectively. Identify
A0 with H[·, 0] as follows:
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Example for n = 6

A0 =


0 0 0 0 0 0
a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4 b5
c0 c1 c2 c3 c4 c5
b2 b3 b4 b5 b0 b1
a1 a2 a3 a4 a5 a0

 = H[·, 0] =



0
a
b
c

b2
4

a2
5

 . (1)

A1 =


a0 a1 a2 a3 a4 a5
0 0 0 0 0 0
a5 a0 a1 a2 a3 a4
b5 b0 b1 b2 b3 b4
c5 c0 c1 c2 c3 c4
b1 b2 b3 b4 b5 b0

 = H[·, 1] =



a
0
a2

b2

c2

b2
5

 . (2)
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Example for n = 6

It can be seen that

A1 = PA0P
t, (3)

where P = (e1, e2, e3, e4, e5, e0)(ei is a column vector with
ei[i] = 1, and ei[j] = 0 for j 6= i), and P t is the transpose of
P .
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Example for n = 6

Similar as (1) and (2), we define A2, A3, A4 and A5. There-
fore, similar as (3) we can get

A2 = PA1P
t = P 2A0(P

2)t,
A3 = PA2P

t = P 3A0(P
3)t,

A4 = PA3P
t = P 4A0(P

5)t,
A5 = PA4P

t = P 5A0(P
5)t.

(4)

Based on Eq (3) and Eq (4), we have H is a QAM if and only

if the rank of
∑5

i=0 µiP
iA0(P

i)t is 5 for all (µ0, µ1, · · · , µ5) 6=
0 ∈ F5

2.
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Quadratic homogeneous APN functions in F2[x] - Theorem

Theorem

Suppose H ∈ GF (2n)n×n, H[0, 0] = 0, H[u, v] = H[v, u]
for 0 ≤ v < u ≤ n − 1, and H[u + 1, v + 1] = H[u, v]2

for 0 ≤ v, u ≤ n − 1. Let P = (e1, e2, · · · , en−2, en−1, e0),
where ei is a column vector with ei[i] = 1, and ei[j] = 0
for j 6= i. Define a matrix A0 ∈ Fn×n

2 such that H[i, 0] =∑n−1
k=0 A0[i, k]α2k . Then H is a QAM if and only if the rank

of
∑n−1

i=0 µiP
iA0(P

i)t is n−1 for all (µ0, µ1, · · · , µn−1) 6= 0 ∈
GF(2)n. (P t is the transpose of P ).
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Quadratic homogeneous APN functions in F2[x] - Remark

As a matter of fact, the condition H[u+ 1, v + 1] = H[u, v]2

for 0 ≤ v, u ≤ n − 1 has assured that there is only one half
elements of H[·, 0] is uncertain, and it can be divided into two
cases:

i) when n = 2m, then H[0, 0] = 0, H[i, 0] ∈ F2n for 0 <
i < m, H[m, 0] = H[m, 0]2

m
, and H[i, 0] = H[n − i, 0]2

i

for m < i < n.

ii) when n = 2m + 1,then H[0, 0] = 0, H[i, 0] ∈ F2n for
0 < i ≤ m, and H[i, 0] = H[n− i, 0]2

i
for m < i < n.
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Equivalence

Proposition

Suppose f1 ∈ F2n [x], with coefficients in F2, and its corre-
sponding QAM is H. Define a new matrix H ′ such that
H ′[i, j] = H[i, j]2 for any 0 ≤ i, j < n. Then H ′ is also
a QAM, and its corresponding function f2 ∈ F2[x], and f1 is
EA-equivalent to f2.
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List for n = 4, 5, 6

n Functions

4 x3

5 x3, x5

6 x3
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List for n = 7

x3

x9

x5

x3 + x9 + x10 + x66

x5 + x18 + x34

x3 + x6 + x20

x3 + x17 + x20 + x34 + x66

x3 + x17 + x33 + x34

x3 + x5 + x10 + x33 + x34

x3 + x9 + x18 + x66

x3 + x12 + x17 + x33

x3 + x20 + x34 + x66

x3 + x12 + x40 + x72

x3 + x6 + x34 + x40 + x72

x3 + x5 + x6 + x12 + x33 + x34

15 CCZ-inequivalent classes.
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List for n = 8

x3

x9

x3 + x6 + x72

x3 + x6 + x144

x3 + x6 + x68 + x80 + x132 + x160

x3 + x5 + x18 + x40 + x66

x3 + x12 + x40 + x66 + x130

7 CCZ-inequivalent classes.
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List for n = 9

x3

x5

x17

x257 + x144 + x130 + x72 + x65 + x18 + x9

x144 + x130 + x72 + x65 + x18 + x9 + x3

x136 + x132 + x96 + x80 + x36 + x34 + x18 + x17 + x12

x264 + x160 + x144 + x132 + x80 + x72 + x66 + x40 + x17

x288 + x272 + x264 + x160 + x144 + x130 + x48 + x34

8 CCZ-inequivalent classes.

Not finished!

Nothing new for n ≤ 8.
[2] Yves Edel, Alexander Pott. A new almost perfect nonlin-
ear function which is not quadratic. Advances in Mathemat-
ics of Communications, 2009, 3 (1) : 59-81



APN

Y. Yu

Quad

APN CCZ

Basis

Rank

QAM

Coeff

Bijection1

Bijection2

Example

Theorem

Remark

Equival.

List

Problem

Thanks

List for n = 9

x3

x5

x17

x257 + x144 + x130 + x72 + x65 + x18 + x9

x144 + x130 + x72 + x65 + x18 + x9 + x3

x136 + x132 + x96 + x80 + x36 + x34 + x18 + x17 + x12

x264 + x160 + x144 + x132 + x80 + x72 + x66 + x40 + x17

x288 + x272 + x264 + x160 + x144 + x130 + x48 + x34
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[2] Yves Edel, Alexander Pott. A new almost perfect nonlin-
ear function which is not quadratic. Advances in Mathemat-
ics of Communications, 2009, 3 (1) : 59-81
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x257 + x144 + x130 + x72 + x65 + x18 + x9

x144 + x130 + x72 + x65 + x18 + x9 + x3

x136 + x132 + x96 + x80 + x36 + x34 + x18 + x17 + x12

x264 + x160 + x144 + x132 + x80 + x72 + x66 + x40 + x17

x288 + x272 + x264 + x160 + x144 + x130 + x48 + x34

8 CCZ-inequivalent classes.

Not finished!

Nothing new for n ≤ 8.
[2] Yves Edel, Alexander Pott. A new almost perfect nonlin-
ear function which is not quadratic. Advances in Mathemat-
ics of Communications, 2009, 3 (1) : 59-81
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Open problems

Conjecture

Given a quadratic APN function f1 ∈ F2n [x], with coefficients
in F2, then it is CCZ-equivalent to another quadratic APN
function f2 ∈ F2n [x], with coefficients in F2 and has at most
n nonzero terms.

Problem

Constructing quadratic APN functions f(x) ∈ F2[x] in F2n

for infinite n.
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Conjecture

Given a quadratic APN function f1 ∈ F2n [x], with coefficients
in F2, then it is CCZ-equivalent to another quadratic APN
function f2 ∈ F2n [x], with coefficients in F2 and has at most
n nonzero terms.

Problem

Constructing quadratic APN functions f(x) ∈ F2[x] in F2n

for infinite n.
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Thanks

Wisdom in the mind
is better than money in the hand.
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