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Definitions and Notations (1)

Let Fq be the finite field of characteristic p and order q = pm.

Definition 1.
The absolute trace of an element γ in Fq is defined by

Tr(γ) = γ + γp + ...+ γpm−1

The range of trace function coincides with the prime field Fp,
and the number of elements with fixed trace equals pm−1.
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Definitions and Notations (2)

Let, as usual, F∗q = Fq \ {0}.

Definition 2.
For each u ∈ Fq, the Kloosterman sum Kq (u) is defined by

Kq(u) =
∑
x∈F∗

q

ω Tr(x+ u
x ),

where ω = e
2πi
p is a primitive p−th root of unity.

In particular, evidently Kq(0) = −1 for any q.

The Kloosterman sum Kqn (u),u ∈ Fq where Fqn is the
finite field of order qn,n > 1, will be referred as a lifted.
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Introduction and Motivation (1)

Some authors (see, e.g. [Shparl09], [LisMoi11]) do prefer
a slightly different definition, i.e. they extend in some sense
the sum over the whole Fq considering 1 +Kq(u) = K∗q(u)
and study the zeros of latter called Kloosterman zeros;

These studies are partly motivated by the connection of
Kloosterman zeros with a certain type of monomial bent
functions characterized (in the binary case) by Dillon.
(see, e.g. [HelKho06], [KonRinVää10], etc.)
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Introduction and Motivation (2)

What is basically known in respect of the distinctness of
Kloosterman sums? (see, e.g., the survey [Zinoviev19])

B. Fischer has proved that the sums Kp(u),u ∈ F∗p are
distinct [Fischer92];

Tend to be distinct for p sufficiently larger than m:
also, in [Fischer92], it has been proved: Kq(a) = Kq(b) iff
b = aps

for some s when p > (2.4m + 1)2;

indeed, the referee of Fischer’s work has conjectured that
holds true for p ≥ 2m. A weaker version of this conjecture
(for p obeying certain additional conditions) was proved in
[Wan95].
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Introduction and Motivation (3)

There are not definitive results concerning the distinctness
of the Kloosterman sums when p is small compared with m
(see, e.g. [CaoHolXia08]);

This work makes a partial progress focusing on the cases:

m = 2n with n ∈ N, u varying over Fp for p odd.
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Some Necessary Facts (1)

We shall refer to next lemma as to main lemma.

Lemma 3.

Let the integers δt , 0 ≤ t ≤ p − 1 satisfy the equality:

p−1∑
t=0

δtω
t = 0 with ω = e

2πi
p .

Then δt = ∆, for all 0 ≤ t ≤ p − 1.

Sketch of proof:

The proof is based on the fact that the minimal polynomial
of ω over Q is φp(y) = 1 + y + y2 + . . .+ yp−1.
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Results and Sketch of Proofs (1)

Proposition 4.

For each pair a,b ∈ Fq it holds Kq(a) +Kq(b) 6= 0 if p > 2.

Proof:
The Kloosterman sum can be rewritten in the form:

Kq(u) =

p−1∑
t=0

Nt (u)ωt (1)

with
Nt (u) = |{x ∈ F∗q : Tr(x +

u
x

) = t}|.

Obviously, it holds:
p−1∑
t=0

Nt (u) = |F∗q| = pm − 1. (2)
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Results and Sketch of Proofs: cont’d (2)

Suppose there exist a,b ∈ Fq s.t. Kq(a) +Kq(b) = 0.
Combining Eq. (1) and the main lemma, one gets:

Nt (a) + Nt (b) = N > 0,

for all 0 ≤ t ≤ p − 1.
Next, summing up the above equalities and using Eq. (2):

pN =

p−1∑
t=0

[Nt (a) + Nt (b)] =

p−1∑
t=0

Nt (a) +

p−1∑
t=0

Nt (b) = 2(pm − 1).

Thus, p divides 2(pm − 1) which is impossible if p > 2.
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Results and Sketch of Proofs (3)

Remarks

Proposition 4 is valid even for Kloosterman sums from
different finite fields of the same odd characteristic.

Note that "a = b" case of Proposition 4 implies for every
u ∈ Fq it holds Kq(u) 6= 0, which is a well-known fact.
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Some Necessary Facts (2)

The Carlitz lifting formula expresses Kqn (u) by the degree of
extension n, order q and sum Kq(u), namely:

Fact 5.

([Carlitz69, Eq. 1.4]) For arbitrary u ∈ F∗q, it holds:

Kqn (u) = −
∑
2t≤n

(−1)n−t n
n − t

(
n − t

t

)
qt (K(u))n−2t

Alternatively, it can be rephrased in terms of the n−th Dickson
polynomial Dn (of the first kind).
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Results and Sketch of Proofs (4)

Making use of the lifting formula for n = 2, one gets

Lemma 6.

If u ∈ F∗q then it holds Kq2(u) = 2q −K2
q(u).

Lemma 6 and Proposition 4 imply

Proposition 7.

For each pair a,b ∈ F∗q,p > 2, the equality Kq2(a) = Kq2(b)
holds iff Kq(a) = Kq(b).
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Results and Sketch of Proofs (5)

The main result of that work is the following theorem:

Theorem 8.

For every n ≥ 0, the (p − 1) Kloosterman sums Kp2n (u),u ∈ F∗p
are distinct.

Sketch of proof:

By induction on n with basis the property of distinctness of
the sums Kp(u),u ∈ F∗p ([Fischer92, p.83]) and induction
step based on Proposition 7.
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Results and Sketch of Proofs (6)

Finally, we deduce

Corollary 9.
For every n ≥ 0, the sums Kp2n (u) when u varies over the

prime subfield Fp,p > 2 are distinct.

Sketch of proof:

Adjoining Theorem 8 with the known result that a Kloosterman
zero cannot belong to a proper subfield of Fq whenever q 6= 16.
(see, e.g. [Moisio09])
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Summary

In this talk, we show:

there is not a pair of Kloosterman sums over the fields of
same odd characteristic which are opposite to each other;

the distinctness of the Kloosterman sums Kp2n (u) obtained
when u varies over the prime subfield Fp, p > 2.
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Appendix (1)

Herein, we present an alternative proof of Fischer’s result.

Proposition 10.
The Kloosterman sums Kp(u),u ∈ F∗p are distinct.

Proof:
Now, it can be easily shown that Nt (u) = χ(t2 − 4u) + 1 with
χ(.) being the Legendre symbol (see, Eq. (1)). Thus,

Kp(u) =

p−1∑
t=0

χ(t2 − 4u)ωt [H.Salie32]
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Appendix: cont’d (2)

Suppose there exist a 6= b ∈ F∗p s.t. Kp(a)−Kp(b) = 0.
By Lemma 3, one gets:

χ(t2 − 4a)− χ(t2 − 4b) = ∆,

for all 0 ≤ t ≤ p − 1. Obviously |∆| ≤ 2 and there are 3 cases
to be considered.

∆ = 0, i.e. χ(t2 − 4a) = χ(t2 − 4b) 6= 0 for all t .
So,

χ(t2 − 4a)

χ(t2 − 4b)
= χ(

t2 − 4a
t2 − 4b

) = 1,

which is a contradiction to injectivity of the function
g(t) = t2−4a

t2−4b = 1 + 4b−4a
t2−4b in the interval I = [0, p−1

2 ];
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Appendix: cont’d (3)

|∆| = 1. In this case it is easily seen that for each t either
χ(t2 − 4a) = 0 or χ(t2 − 4b) = 0, which is impossible if
p > 3 since the quadratic t2 − 4u,u ∈ F∗p has at most one
zero in the considered interval I;

|∆| = 2, i.e. χ(t2 − 4a) = −χ(t2 − 4b) 6= 0 for all t . Then
proceed as in the case ∆ = 0.
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