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Notation

Fpn : the finite field with pn elements.

α: a primitive element of Fpn .

f(x): a mapping from Fpn to Fpn .

C0: the set of squares in F∗
pn .

C1: the set of non-squares in F∗
pn .
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The differential uniformity of f(x)

Nf (a, b): the number of solutions x ∈ GF(pn) of

f(x+ a)− f(x) = b (1)

where a, b ∈ GF(pn).

The differential uniformity ∆f of f(x):

∆f = max {Nf (a, b) | a ∈ GF(pn)∗, b ∈ GF(pn)} . (2)

f(x) is said to be differentially ∆f -uniform.

Perfect nonlinear function and almost perfect nonlinear function.
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Differential spectrum of a power mapping

When f(x) = xd is a power mapping,

(x+ a)d − xd = b⇔ ad
((x

a
+ 1
)d
−
(x
a

)d)
= b

implying that Nf (a, b) = Nf (1, b
ad

) for all a 6= 0.

Differential spectrum of xd

Assume that f(x) = xd is differentially k-uniform.

ωi = | {b ∈ GF(pn) | Nf (1, b) = i} |
(
(x+ 1)d − xd = b

)
.

The differential spectrum of f(x) is defined as the set

S = {ω0, ω1, · · · , ωk} .
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Properties of differential spectrum

Basic identities

k∑
i=0

ωi = pn and

k∑
i=0

iωi = pn. (3)

Equivalence

The differential spectra of xd and xe are the same if

d and e are in the same p-cyclotomic coset modulo pn − 1, or

d is the multiplicative inverse of e modulo pn − 1.

The differential spectra of APN and PN power mappings

S = {ω0 = 0, ω1 = pn} if p is odd and f(x) = xd is PN;

S =
{
ω0 = 2n−1, ω2 = 2n−1

}
if p = 2 and f(x) = xd is APN.
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Power functions with known differential spectra (I)

Known results over F2n

d Condition ∆f Ref.
2s + 1 gcd(n, s) = 2 4 Blondeau, 2010

22s − 2s − 1 gcd(n, s) = 2 4 Blondeau, 2010
2n − 2 n even 4 Blondeau, 2010

22k + 2k + 1 n = 4k, k odd 4 Blondeau, 2010
22k + 2k + 1 n = 4k 4 Xiong and Yan, 2017

2t − 1 t = 3, n− 2 6 P. Charpin, 2011IT
2t − 1 t = n−1

2 , n+3
2 6 or 8 Blondeau, 2014DCC

2m + 2(m+1)/2 + 1 n = 2m,m ≥ 5 odd 8 Xiong, 2018DCC
2m+1 + 3 n = 2m,m ≥ 5 odd 8 Xiong, 2018DCC

C. Blondeau, A. Canteaut and P. Charpin, “Differential properties of power functions,” Int. J.

Information and Coding Theory, vol. 1, no. 2, pp. 149-170, 2010.
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Power functions with known differential spectra (II)

Known over Fpn , p odd

d Condition ∆f Ref.
pk+1

2 gcd(n, k) = e pe−1
2 or pe + 1 Choi et al, 2013

pn+1
pm+1 + pn−1

2

p ≡ 3 (mod 4)
m|n, n odd

, pm+1
2 Choi et al, 2013

d(pk + 1) ≡ 2
(mod pn − 1)

e = gcd(n, k)
n/e odd

, pe+1
2 Tian et al, 2017

Kasami
p2k − pk + 1

gcd(n, k) = 1
n odd

, p+ 1 Yan et al, 2019TIT

S. T. Choi, S. Hong, J. S. No and H. Chung, “Differential spectrum of some power functions in

odd prime characteristic,” Finite Fields Appl., vol. 21, pp. 11-29, 2013.

H. Yan, et al, “Differential spectrum of Kasami power permutations over odd characteristic

finite fields,” IEEE Trans. Inf. Theory, DOI 10.1109/TIT.2019.2910070, 2019.
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An odd problem

Theorem (Helleseth, Rong, Sandberg, TIT, 1999)

Let d = pn − 3 and f(x) = xd be a mapping over GF(pn).

if p = 2, then ∆f = 2 if n is odd and ∆f = 4 if n is even.

if p is an odd prime, then 1 ≤ ∆f ≤ 5.

Special case: if p = 3 and n is odd, then ∆f = 2.

Differential spectrum for the special case p = 2 (Charpin 2010)

pn − 3 is equivalent to the inverse power mapping over GF(2n).

S = {ω0 = 2n−1 + 1, ω2 = 2n−1 − 2, ω4 = 1} for even n.

S =
{
ω0 = 2n−1, ω2 = 2n−1

}
for odd n.
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Main results: the case p = 3

Theorem (Differential uniformity)

Let d = 3n − 3 and f(x) = xd be a power mapping from GF(3n) to GF(3n),
where n ≥ 2. Then the differential uniformity ∆f of f(x) is given by

∆f =

 2, if n is odd,
4, if n ≡ 2 (mod 4),
5, if n ≡ 0 (mod 4).

Theorem (Differential spectra)

Odd n: S = {ω0 = 3n−3
2 , ω1 = 3, ω2 = 3n−3

2 }.

n ≡ 2 (mod 4): S = {ω0 = 3n−9
4 , ω1 = 2 · 3n−1 + 3, ω4 = 3n−1−3

4 }.
n ≡ 0 (mod 4):

S = {ω0 = 3n−1
4 , ω1 = 2 · 3n−1 + 1, ω4 = 3n−1−11

4 , ω5 = 2}.
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The sketch

Determining the value N(b) and its frequency: the number of
solutions of (x+ 1)d − xd = b.

Key equation

(x+ 1)d − xd = b⇒ (x+ 1)−2 − x−2 = b , b ∈ GF(3n) \GF(3)

⇒ x4 + 2x3 + x2 +
2

b
x+

1

b
= 0, x −→ x− 1

2

⇒ x4 + x2 − ux+ 1 = 0, u =
1

b
. (4)
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Some useful lemmas

Quadratic equation

The polynomial Q(x) = x2 + ax+ b ∈ GF(q)[x], q odd, is irreducible in
GF(q)[x] if and only if a2 − 4b is a nonsquare in GF(q). In particular, if
a2 − 4b is a nonzero square in GF(q), Q(x) has two distinct roots in
GF(q).

Cubic equation

Let a, b ∈ GF(3n) and a 6= 0. The factorizations of g(x) = x3 + ax+ b
over GF(3n) are characterized as follows:
(i) g(x) = (1, 1, 1)⇔ −a is a square in GF(3n) and Trn1 (b/c3) = 0;
(ii) g(x) = (1, 2)⇔ −a is not a square in GF(3n);
(iii) g(x) = (3)⇔ −a is a square in GF(3n) and Trn1 (b/c3) 6= 0.
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Some useful lemmas (continue)

The cyclotomic number (i, j): the number of solutions (xi, xj) ∈ Ci × Cj
such that xi + 1 = xj for i, j ∈ {0, 1}.

Cyclotomic numbers

if pn ≡ 1 (mod 4), then

(0, 0) =
pn − 5

4
, (0, 1) = (1, 0) = (1, 1) =

pn − 1

4
;

if pn ≡ 3 (mod 4), then

(0, 0) = (1, 0) = (1, 1) =
pn − 3

4
, (0, 1) =

pn + 1

4
.
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Some useful lemmas (continue)

E00: the set of x ∈ GF(pn)∗ such that x and x+ 1 both are nonzero
squares, where p is odd.

Representation of E00 (Choi et al, FFA, 2013):

Each x ∈ E00 has the following representation

x =

(
αk − α−k

2

)2

,

where k ∈ {1, · · · , p
n−5
4 } if pn ≡ 1 (mod 4) and k ∈ {1, · · · , p

n−3
4 } if

pn ≡ 3 (mod 4).
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Some results about the key equation

Main idea

Let hu(x) = x4 + x2 − ux+ 1. If hu(x) has two or more roots in GF(3n),
then

hu(x) =
(
x2 + ax+ b

) (
x2 − ax+ b−1

)
,

where a, b ∈ GF(3n)∗ satisfyb+ b−1 = a2 + 1,

u = a(b− b−1),
(5)

and at least one of a2 − b and a2 − b−1 is a square in GF(3n)∗.

b+ b−1 = a2 + 1 holds ⇔ a2 − 1 is a nonzero square.(
a2 − b

) (
a2 − b−1

)
= −(a2 − 1).

u = ±a2
√
a2 − 1.

Yongbo Xia The Differential Spectrum of A Ternary Power Mapping 15 / 20



The properties about the roots of hu(x)

Proposition

for each u ∈ GF(3n) \GF(3), the possible number of roots of hu(x)
in GF(3n) are 0, 1, 2 and 4;.

if η is a root of hu(x) in GF(3n), then it has multiplicity 1 and
belongs to GF(3n) \GF(3);
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The properties about the roots of hu(x)

Proposition (continue)

when n > 1 is odd, hu(x) cannot have four roots in GF(3n) and in
this case the number of u ∈ GF(3n) \GF(3) such that hu(x) has two
roots in GF(3n) is equal to 3n−3

2 ;

when n is even, hu(x) cannot have two roots in GF(3n) and in this
case the number of u ∈ GF(3n) \GF(3) such that hu(x) has four

roots in GF(3n) is equal to 3n−1−3
4 if n ≡ 2 (mod 4) and 3n−1−11

4 if
n ≡ 0 (mod 4) .
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The sketch of the proof

Determining the value N(b) and its frequency: the number of
solutions of (x+ 1)d − xd = b.

Key equation

(x+ 1)d − xd = b⇒ (x+ 1)−2 − x−2 = b , b ∈ GF(3n) \GF(3)

⇒ x4 + 2x3 + x2 +
2

b
x+

1

b
= 0, x −→ x− 1

2

⇒ x4 + x2 − ux+ 1 = 0, u =
1

b
. (6)

Find N(0), N(−1), N(1).

Find N(b): the number of solutions of x4 + x2 − ux+ 1 = 0, u = 1
b

with b ∈ GF(3n) \GF(3).
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Some problems

The differential spectrum of xp
n−3 when p > 3

Find the differential spectra of other power mappings.

Find the differential spectra of other mappings, which are not power
mappings.

Find the relationship between the differential spectrum and the
nonlinearity of a function over finite fields.
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Thank You for Your Attention!
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