Equivalence of Functions over Finite Spaces via Group Theory

Ulrich Dempwolff

We consider:

Functions $f: X \to Y$, X, Y finite dimensional spaces over a prime field \mathbb{F}_p .

Affine transformations $\alpha = \Phi \circ \tau_v \in AGL(V)$, $V = X \times Y$, where $\Phi \in GL(V)$ and for $v = (x_0, y_0)$ one has $(x, y)\tau_v = (x + x_0, y + y_0)$.

Write
$$\Phi = \begin{pmatrix} \Phi_{XX} & \Phi_{XY} \\ \Phi_{YX} & \Phi_{YY} \end{pmatrix}$$
 when

$$(x,y)\Phi = (x\Phi_{XX} + y\Phi_{YX}, x\Phi_{XY} + y\Phi_{YY}).$$

1

 $\Gamma(f) = \{(x, f(x)) \mid x \in X\} \subset V = X \times Y \text{ graph of } f.$

DEFINITION. Two functions $f, g : X \to Y$ are CCZ equivalent, if there exists $\alpha \in AGL(V)$ with

$$\Gamma(g) = \Gamma(f)\alpha.$$

If
$$\alpha = \Phi \circ \tau_v$$
 ($\Phi = \begin{pmatrix} \Phi_{XX} & \Phi_{XY} \\ \Phi_{YX} & \Phi_{YY} \end{pmatrix}$, $v = (x_0, y_0)$ as above) this means:

$$g(x\Phi_{XX} + f(x)\Phi_{YX} + x_0) = f(x)\Phi_{YY} + x\Phi_{XY} + y_0$$

Requiring $\Phi_{YX} = 0$ leads to:

DEFINITION. Two functions $f, g : X \to Y$ are EA equivalent (extended affine), if there exists $\alpha = \Phi \circ \tau_v \in AGL(V)$ with $(0 \times Y)\Phi = 0 \times Y$ and

$$\Gamma(g) = \Gamma(f)\alpha.$$

Equivalent to

$$g(x\Phi_{XX} + x_0) = f(x)\Phi_{YY} + x\Phi_{XY} + y_0.$$

Even more special is affine equivalent where we require in addition $(X \times 0)\Phi = X \times 0$ i.e. $\Phi_{XY} = 0$, leading to

$$g(x\Phi_{XX} + x_0) = f(x)\Phi_{YY} + y_0.$$

INVARIANTS

Common Approach: Use invariants to solve equivalence problems.

EXAMPLE: If $g(x) = f(x\Phi_X + x_0)\Phi_Y + x\Phi_{XY} + y_0$ then f and g have the same degree (viewed as polynomial functions).

So two functions with different degrees are not EA equivalent.

EXAMPLE: Let $\mathcal{D}(f)$ be the multiset of $|\Gamma(f) \cap \Gamma(f)\tau_v|$, $v \in V$. Then $\mathcal{D}(f) = \mathcal{D}(g)$ if f and g are CCZ equivalent.

$$\mathbf{G}(f) = \{ \alpha \in \mathsf{AGL}(V) \mid \mathsf{\Gamma}(f) = \mathsf{\Gamma}(f)\alpha \}$$

is the group of CCZ automorphisms.

One has

$$\mathbf{A}(f) \leq \mathbf{E}\mathbf{A}(f) \leq \mathbf{G}(f),$$

where A(f) (EA(f)) is the group of group of affine automorphisms (group of EA automorphisms).

GOAL: Use (partial) knowledge about these groups to solve equivalence problems.

OBSERVATION:

If $\alpha : \Gamma(f) \to \Gamma(g)$ CCZ-isomorphism then

$$\mathbf{G}(g) = \alpha^{-1} \mathbf{G}(f) \alpha.$$

Similarly, for α EA-isomorphism or affine isomorphism

$$\mathbf{EA}(g) = \alpha^{-1} \mathbf{EA}(f) \alpha$$
 or $\mathbf{A}(g) = \alpha^{-1} \mathbf{A}(f) \alpha$.

Lemma. Let p > 2 and $f, g : X \to Y$ EA equivalent functions. Assume f(0) = g(0) = 0 and f(-x) = f(x), g(-x) = g(x) for all $x \in X$. Then there exist $\Phi_X \in GL(X)$, $\Phi_Y \in GL(Y)$, such that

$$f(x\Phi_X) = g(x)\Phi_Y$$
 all $x \in X$.

We have $\iota = diag(-1_X, 1_Y) \in EA(f) \cap EA(g)$. Let $\alpha \in AGL(V)$ be an EA isomorphism from f to g. Then

$$\iota, \alpha^{-1}\iota\alpha \in \mathbf{EA}(g) = \alpha^{-1}\mathbf{EA}(f)\alpha.$$

By Sylow's Theorem there exists $\psi \in EA(g)$ with

$$\iota = \psi^{-1}(\alpha^{-1}\iota\alpha)\psi.$$

 $\beta = \alpha \circ \psi$ is also an EA-automorphism from f to g with

$$\beta \iota = \iota \beta.$$

Forces (if $\beta = \Phi \circ \tau_v$)

$$\Phi = diag(\Phi_X, \Phi_Y)$$
 and $v = 0$.

STRATEGY

Let $\alpha : \Gamma(f) \to \Gamma(g)$ be an EA isomorphism (CCZ isomorphism).

1. Locate groups $A \leq EA(f)$ (or G(f)) and $B \leq EA(g)$ (or G(g)).

- 2. Try to modify α such that $B = \alpha^{-1}A\alpha$ (group theory!).
- 3. Draw conclusions from 2.

In our case: 1. $A = B = \langle \iota \rangle$, 2. modification $\alpha \to \beta$ by Sylow's Thm. and 3. conclusion $\beta = \Phi$ is an affine isomorphism in GL(V).

POWER FUNCTIONS:

Let $X = Y = \mathbb{F}_{p^n}$ and define $p_k : X \to Y$ by $p_k(x) = x^k$.

Theorem 1. (Yoshiara 2016, D. 2018) p_k is CCZ equivalent to p_ℓ iff there exists a $0 \le a < n$, such that $k \equiv p^a \ell \pmod{p^n - 1}$ or $k\ell \equiv p^a \pmod{p^n - 1}$.

SOME MAIORANA BENT FUNCTIONS:

Let $F = \mathbb{F}_{p^n}$, $X = F \times F$, $Y = \mathbb{F}_p$, assume $(k, p^n - 1) = 1$ and define $\mu_k : X \to Y$ by $\mu_k(x_1, x_2) = \operatorname{Tr}(x_1 x_2^k)$ where $\operatorname{Tr} : F \to \mathbb{F}_p$ is the absolute trace. Then μ_k is a bent function (of Maiorana type):

Theorem 2. (D. 2019) μ_k is EA equivalent to μ_ℓ iff there exists a $0 \le a < n$, such that $k \equiv p^a \ell \pmod{p^n - 1}$.

Note:

Theorem. (Budaghyan, Carlet 2011) Two bent functions are CCZ equivalent iff they are EA equivalent.

ON THEOREM 2:

Observation. Let $(k, p^n - 1) = 1$ and $0 < \overline{k} < p^n - 1$ the unique number with

$$k\overline{k} \equiv -1 \pmod{p^n - 1}.$$

Define $z_a \in GL(V)$, $a \in F^*$ by

$$z_a = diag(T(a), T(a^{\overline{k}}), 1)$$

where $T(a) : F \ni x \mapsto ax \in F$ i.e.

$$(x_1, x_2, y)z_a = (ax_1, a^{\overline{k}}x_2, y).$$

Then

$$\mathcal{Z}(k) = \{z_a \mid a \in F^*\} \leq \mathbf{A}(\mu_k).$$

12

Assume p > 2 (easier than p = 2) and that μ_k and μ_ℓ are EA equivalent.

By the Lemma there exists $\Phi \in GL(V)$ which fixes $X = F \times F \times 0$ and $Y = 0 \times 0 \times \mathbb{F}_p$ such that

$$\mu_\ell(x_1, x_2) \Phi_Y = \mu_k((x_1, x_2) \Phi_X),$$

in particular:

$$\mathcal{Z}(\ell), \Phi^{-1}\mathcal{Z}(k)\Phi \leq \mathbf{A}(\mu_{\ell}) = \Phi^{-1}\mathbf{A}(\mu_{k})\Phi$$

Goal: Show, that we can choose Φ such that

$$\mathcal{Z}(\ell) = \Phi^{-1}\mathcal{Z}(k)\Phi.$$

Simplification for Φ :

Definition. For a function $f : X \to Y$ and $v \in X$ the function $D_v f : X \to Y$ defined by $D_v f(x) = f(x+v) - f(x)$ is the derivative of f in direction v.

Result: If k is not a p-power, then $D_v D_v \mu_k = 0$ iff $v \in X_1 = F \times 0$.

Consequence: The group $A(\mu_k)$ (k not a p-power) and Φ_X both fix the subspace X_1 .

Byproduct: $\mu_k \not\sim \mu_{p^a}$, k not a p-power.

Let $W = X_1$ or X/X_1 . Then the restrictions $(\Phi^{-1}\mathcal{Z}(k)\Phi)_W$ and $\mathcal{Z}(\ell)_W$ are Singer groups in GL(W) but also of $A(\mu_\ell)_W$. One knows from group theory, that Singer groups of $A(\mu_\ell)_W$ are conjugate. By adjusting Φ with an element from $A(\mu_\ell)$ we may assume

$$(\Phi^{-1}\mathcal{Z}(k)\Phi)_W = \mathcal{Z}(\ell)_W.$$

A basic theorem of group theory (Schur-Zassenhaus Theoren) allows a further adjustment, so that we may even assume

$$\Phi^{-1}\mathcal{Z}(k)\Phi=\mathcal{Z}(\ell).$$

A generator of $\mathcal{Z}(k)$ has the form

$$z_{\omega} = diag(T(\omega), T(\omega^{\overline{k}}), 1) = \begin{pmatrix} T(\omega) & 0 & 0\\ 0 & T(\omega^{\overline{k}}) & 0\\ 0 & 0 & 1 \end{pmatrix},$$

ω primitive in F^* . Note $Φ = diag(Φ_{X_1}, Φ_{X_2}, c)$ ($X_2 = 0 \times F$), so

$$\Phi^{-1}z_{\omega}\Phi = diag(\Phi_{X_{1}}^{-1}T(\omega)\Phi_{X_{1}}, \Phi_{X_{2}}^{-1}T(\omega^{\bar{k}})\Phi_{X_{2}}, 1)$$

is a generator of $\mathcal{Z}(\ell)$. Typical element of $\mathcal{Z}(\ell)$

$$z'_{\zeta} = diag(T(\zeta), T(\zeta^{\overline{\ell}}), 1).$$

For a suitable ζ :

$$\Phi_{X_1}^{-1}T(\omega)\Phi_{X_1} = T(\zeta), \quad \Phi_{X_2}^{-1}T(\omega^{\overline{k}})\Phi_{X_2} = T(\zeta^{\overline{\ell}})$$

The characteristic polynomial of the \mathbb{F}_p -linear operator T(a) is $f_a(X) = (X - a)(X - a^p) \cdots (X - a^{p^{n-1}}).$

Hence

$$f_{\omega}(X) = f_{\zeta}(X)$$
 and $f_{\omega^{\overline{k}}}(X) = f_{\zeta^{\overline{\ell}}}(X).$

Conclude

$$\ell \equiv p^x k \pmod{p^n - 1}.$$

ON THEOREM 1:

Set
$$X = Y = F = \mathbb{F}_{p^n}$$
, $V = X \times Y$ and recall $p_k(x) = x^k$. Set
 $z_a = diag(T(a), T(a^k)).$

Then

$$\mathcal{Z}(k) = \{z_a \mid a \in F^*\} \leq \mathbf{A}(p_k).$$

GOAL: Show, that there exists $\Phi \in GL(V)$ such that

$$\Phi^{-1}\mathcal{Z}(k)\Phi = \mathcal{Z}(\ell)$$

and that either Φ fixes X and Y; i.e.

 $\Phi = diag(\Phi_X, \Phi_Y) \quad \Rightarrow \quad \ell \equiv p^a k \pmod{p^n - 1}$

or Φ interchanges X and Y; i.e.

$$\Phi = \begin{pmatrix} 0 & \Phi_{XY} \\ \Phi_{YX} & 0 \end{pmatrix} \Rightarrow k\ell \equiv p^a \pmod{p^n - 1}.$$

Easy:

If $\alpha \in AGL(V)$ with $\Gamma(p_{\ell}) = \Gamma(p_k)\alpha$ then there exists even $\Phi \in GL(V)$ with $\Gamma(p_{\ell}) = \Gamma(p_k)\Phi$. In particular:

$$\mathbf{G}(p_{\ell}) = \Phi^{-1}\mathbf{G}(p_k)\Phi$$

From number theory:

Theorem. (Zsigmondy 1899) Let p be a prime, n > 1. (1) Either there exists a prime r which divides $p^n - 1$ but not $p^k - 1$ for $1 \le k < n$. (2) Or n = 2, p + 1 is a 2-power or p = 2, n = 6. Assume, that we can use Zsigmondy's Theorem and let $r \mid p^n - 1$ a "Zsigmondy prime".

For $m = k, \ell$ let $\mathcal{Z}(m)_r$ be the Sylow *r*-subgroup of $\mathcal{Z}(m)$.

Easy: $\mathcal{Z}(m)_r$ is a Sylow *r*-subgroup of $G(p_m)$. By Sylow's Theorem we may assume.

$$\mathcal{Z}(\ell)_r = \Phi^{-1}\mathcal{Z}(k)_r \Phi.$$

Let

$$z = diag(T(\omega), T(\omega^k))$$

be a generator of $\mathcal{Z}(k)_r$. The restriction of z to X and Y have characteristic polynomials $f_{\omega}(X)$ and $f_{\omega k}(X)$. Distinguish:

Case A. $f_{\omega}(X) \neq f_{\omega^k}(X)$

Case B. $f_{\omega}(X) = f_{\omega^k}(X)$

To Case A:

X and Y are the **only spaces** invariant under $\mathcal{Z}(\ell)_r = \Phi^{-1}\mathcal{Z}(k)_r \Phi$

 $\Rightarrow X$ and Y are the **only spaces** invariant under $\mathcal{Z}(\ell)$ and $\Phi^{-1}\mathcal{Z}(k)\Phi$ since these groups commute with $\mathcal{Z}(\ell)_r$

$$\Rightarrow \mathcal{Z}(\ell) = \Phi^{-1}\mathcal{Z}(k)\Phi$$
 done!

To Case B: More difficult.

Here $T(\omega) \sim T(\omega^k)$ where $z = diag(T(\omega), T(\omega^k))$. With $\phi = T(\omega)$: $z \sim \begin{pmatrix} \phi & 0 \\ 0 & \phi \end{pmatrix}$.

By Schur's Lemma (consider as ϕ as irreducible $n \times n$ -matrix)

$$\{\psi \in \mathbb{F}_p^{n \times n} \mid \psi \phi = \phi \psi\} \simeq F \simeq \mathbb{F}_{p^n}$$

and

$$H = \{ \Psi \in \mathsf{GL}(V) \mid \Psi z = z \Psi \} \simeq \mathsf{GL}(2, p^n).$$

This group is very well studied!

Have

$$\mathcal{Z}(\ell), \ \Phi^{-1}\mathcal{Z}(k)\Phi \leq H.$$

WARNING: Two cyclic subgroups of order $p^n - 1$ in H need not to be conjugate!

HOWEVER: $\mathcal{Z}(\ell)$ and $\Phi^{-1}\mathcal{Z}(k)\Phi$ leave the set $\Gamma(p_{\ell}) \subset V$ invariant.

Then group theoretic arguments show, that there exists a

$$\Psi \in \langle \mathcal{Z}(\ell), \Phi^{-1}\mathcal{Z}(k)\Phi
angle$$

with

$$\mathcal{Z}(\ell) = \Psi^{-1}(\Phi^{-1}\mathcal{Z}(k)\Phi)\Psi = (\Phi\Psi)^{-1}\mathcal{Z}(k)\Phi\Psi \quad \text{done!}$$