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We consider:

Functions f : X → Y , X,Y finite dimensional spaces over a prime

field Fp.

Affine transformations α = Φ ◦ τv ∈ AGL(V ), V = X × Y , where

Φ ∈ GL(V ) and for v = (x0, y0) one has (x, y)τv = (x+x0, y+y0).

Write Φ =

(
ΦXX ΦXY
ΦY X ΦY Y

)
when

(x, y)Φ = (xΦXX + yΦY X , xΦXY + yΦY Y ).
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Γ(f) = {(x, f(x)) | x ∈ X} ⊂ V = X × Y graph of f .

DEFINITION. Two functions f, g : X → Y are CCZ equivalent,

if there exists α ∈ AGL(V ) with

Γ(g) = Γ(f)α.

If α = Φ ◦ τv (Φ =

(
ΦXX ΦXY
ΦY X ΦY Y

)
, v = (x0, y0) as above) this

means:

g(xΦXX + f(x)ΦY X + x0) = f(x)ΦY Y + xΦXY + y0
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Requiring ΦY X = 0 leads to:

DEFINITION. Two functions f, g : X → Y are EA equivalent

(extended affine), if there exists α = Φ ◦ τv ∈ AGL(V ) with

(0× Y )Φ = 0× Y and

Γ(g) = Γ(f)α.

Equivalent to

g(xΦXX + x0) = f(x)ΦY Y + xΦXY + y0.

Even more special is affine equivalent where we require in addi-

tion (X × 0)Φ = X × 0 i.e. ΦXY = 0, leading to

g(xΦXX + x0) = f(x)ΦY Y + y0.
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INVARIANTS

Common Approach: Use invariants to solve equivalence prob-

lems.

EXAMPLE: If g(x) = f(xΦX + x0)ΦY + xΦXY + y0 then f and

g have the same degree (viewed as polynomial functions).

So two functions with different degrees are not EA equivalent.

EXAMPLE: Let D(f) be the multiset of |Γ(f) ∩ Γ(f)τv|, v ∈ V .

Then D(f) = D(g) if f and g are CCZ equivalent.
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G(f) = {α ∈ AGL(V ) | Γ(f) = Γ(f)α}

is the group of CCZ automorphisms.

One has

A(f) ≤ EA(f) ≤ G(f),

where A(f) (EA(f)) is the group of group of affine automor-

phisms (group of EA automorphisms).

GOAL: Use (partial) knowledge about these groups to solve

equivalence problems.
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OBSERVATION:

If α : Γ(f)→ Γ(g) CCZ-isomorphism then

G(g) = α−1G(f)α.

Similarly, for α EA-isomorphism or affine isomorphism

EA(g) = α−1EA(f)α or A(g) = α−1A(f)α.

6



Lemma. Let p > 2 and f, g : X → Y EA equivalent functions.

Assume f(0) = g(0) = 0 and f(−x) = f(x), g(−x) = g(x) for all

x ∈ X. Then there exist ΦX ∈ GL(X), ΦY ∈ GL(Y ), such that

f(xΦX) = g(x)ΦY all x ∈ X.
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We have ι = diag(−1X ,1Y ) ∈ EA(f) ∩ EA(g). Let α ∈ AGL(V )

be an EA isomorphism from f to g. Then

ι, α−1ια ∈ EA(g) = α−1EA(f)α.

By Sylow’s Theorem there exists ψ ∈ EA(g) with

ι = ψ−1(α−1ια)ψ.

β = α ◦ ψ is also an EA-automorphism from f to g with

βι = ιβ.

Forces (if β = Φ ◦ τv)

Φ = diag(ΦX ,ΦY ) and v = 0.
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STRATEGY

Let α : Γ(f)→ Γ(g) be an EA isomorphism (CCZ isomorphism).

1. Locate groups A ≤ EA(f) (or G(f)) and B ≤ EA(g) (or

G(g)).

2. Try to modify α such that B = α−1Aα (group theory!).

3. Draw conclusions from 2.

In our case: 1. A = B = 〈ι〉, 2. modification α → β by Sylow’s

Thm. and 3. conclusion β = Φ is an affine isomorphism in

GL(V ).
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POWER FUNCTIONS:

Let X = Y = Fpn and define pk : X → Y by pk(x) = xk.

Theorem 1. (Yoshiara 2016, D. 2018) pk is CCZ equivalent to

p` iff there exists a 0 ≤ a < n, such that k ≡ pa` (mod pn − 1) or

k` ≡ pa (mod pn − 1).
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SOME MAIORANA BENT FUNCTIONS:

Let F = Fpn, X = F × F , Y = Fp, assume (k, pn − 1) = 1 and

define µk : X → Y by µk(x1, x2) = Tr(x1x
k
2) where Tr : F → Fp

is the absolute trace. Then µk is a bent function (of Maiorana

type):

Theorem 2. (D. 2019) µk is EA equivalent to µ` iff there exists

a 0 ≤ a < n, such that k ≡ pa` (mod pn − 1).

Note:

Theorem. (Budaghyan, Carlet 2011) Two bent functions are

CCZ equivalent iff they are EA equivalent.
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ON THEOREM 2:

Observation. Let (k, pn − 1) = 1 and 0 < k̄ < pn − 1 the unique

number with

kk̄ ≡ −1 (mod pn − 1).

Define za ∈ GL(V ), a ∈ F ∗ by

za = diag(T (a), T (ak̄),1)

where T (a) : F 3 x 7→ ax ∈ F i.e.

(x1, x2, y)za = (ax1, a
k̄x2, y).

Then

Z(k) = {za | a ∈ F ∗} ≤ A(µk).
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Assume p > 2 (easier than p = 2) and that µk and µ` are EA

equivalent.

By the Lemma there exists Φ ∈ GL(V ) which fixes X = F ×F ×0

and Y = 0× 0× Fp such that

µ`(x1, x2)ΦY = µk((x1, x2)ΦX),

in particular:

Z(`),Φ−1Z(k)Φ ≤ A(µ`) = Φ−1A(µk)Φ

Goal: Show, that we can choose Φ such that

Z(`) = Φ−1Z(k)Φ.
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Simplification for Φ:

Definition. For a function f : X → Y and v ∈ X the function

Dvf : X → Y defined by Dvf(x) = f(x+v)−f(x) is the derivative

of f in direction v.

Result: If k is not a p-power, then DvDvµk = 0 iff v ∈ X1 = F×0.

Consequence: The group A(µk) (k not a p-power) and ΦX both

fix the subspace X1.

Byproduct: µk 6∼ µpa, k not a p-power.
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Let W = X1 or X/X1. Then the restrictions (Φ−1Z(k)Φ)W and

Z(`)W are Singer groups in GL(W ) but also of A(µ`)W . One

knows from group theory, that Singer groups of A(µ`)W are

conjugate. By adjusting Φ with an element from A(µ`) we may

assume

(Φ−1Z(k)Φ)W = Z(`)W .

A basic theorem of group theory (Schur-Zassenhaus Theoren)

allows a further adjustment, so that we may even assume

Φ−1Z(k)Φ = Z(`).
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A generator of Z(k) has the form

zω = diag(T (ω), T (ωk̄),1) =

 T (ω) 0 0

0 T (ωk̄) 0
0 0 1

 ,
ω primitive in F ∗. Note Φ = diag(ΦX1

,ΦX2
, c) ( X2 = 0× F ), so

Φ−1zωΦ = diag(Φ−1
X1
T (ω)ΦX1

,Φ−1
X2
T (ωk̄)ΦX2

,1)

is a generator of Z(`). Typical element of Z(`)

z′ζ = diag(T (ζ), T (ζ
¯̀
),1).

For a suitable ζ:

Φ−1
X1
T (ω)ΦX1

= T (ζ), Φ−1
X2
T (ωk̄)ΦX2

= T (ζ
¯̀
)
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The characteristic polynomial of the Fp-linear operator T (a) is

fa(X) = (X − a)(X − ap) · · · (X − ap
n−1

).

Hence

fω(X) = fζ(X) and f
ωk̄

(X) = f
ζ ¯̀(X).

Conclude

` ≡ pxk (mod pn − 1).
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ON THEOREM 1:

Set X = Y = F = Fpn, V = X × Y and recall pk(x) = xk. Set

za = diag(T (a), T (ak)).

Then

Z(k) = {za | a ∈ F ∗} ≤ A(pk).
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GOAL: Show, that there exists Φ ∈ GL(V ) such that

Φ−1Z(k)Φ = Z(`)

and that either Φ fixes X and Y ; i.e.

Φ = diag(ΦX ,ΦY ) ⇒ ` ≡ pak (mod pn − 1)

or Φ interchanges X and Y ; i.e.

Φ =

(
0 ΦXY

ΦY X 0

)
⇒ k` ≡ pa (mod pn − 1).
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Easy:

If α ∈ AGL(V ) with Γ(p`) = Γ(pk)α then there exists even Φ ∈
GL(V ) with Γ(p`) = Γ(pk)Φ. In particular:

G(p`) = Φ−1G(pk)Φ

From number theory:

Theorem. (Zsigmondy 1899) Let p be a prime, n > 1.

(1) Either there exists a prime r which divides pn − 1 but not

pk − 1 for 1 ≤ k < n.

(2) Or n = 2, p+ 1 is a 2-power or p = 2, n = 6.
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Assume, that we can use Zsigmondy’s Theorem and let r | pn−1

a ”Zsigmondy prime”.

For m = k, ` let Z(m)r be the Sylow r-subgroup of Z(m).

Easy: Z(m)r is a Sylow r-subgroup of G(pm). By Sylow’s The-

orem we may assume.

Z(`)r = Φ−1Z(k)rΦ.
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Let

z = diag(T (ω), T (ωk))

be a generator of Z(k)r. The restriction of z to X and Y have

characteristic polynomials fω(X) and fωk(X). Distinguish:

Case A. fω(X) 6= fωk(X)

Case B. fω(X) = fωk(X)
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To Case A:

X and Y are the only spaces invariant under Z(`)r = Φ−1Z(k)rΦ

⇒ X and Y are the only spaces invariant under Z(`) and Φ−1Z(k)Φ

since these groups commute with Z(`)r

⇒ Z(`) = Φ−1Z(k)Φ done!
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To Case B: More difficult.

Here T (ω) ∼ T (ωk) where z = diag(T (ω), T (ωk)). With φ = T (ω):

z ∼
(
φ 0
0 φ

)
.

By Schur’s Lemma (consider as φ as irreducible n× n-matrix)

{ψ ∈ Fn×np | ψφ = φψ} ' F ' Fpn

and

H = {Ψ ∈ GL(V ) | Ψz = zΨ} ' GL(2, pn).

This group is very well studied!
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Have

Z(`), Φ−1Z(k)Φ ≤ H.

WARNING: Two cyclic subgroups of order pn − 1 in H need not

to be conjugate!

HOWEVER: Z(`) and Φ−1Z(k)Φ leave the set Γ(p`) ⊂ V invari-

ant.

Then group theoretic arguments show, that there exists a

Ψ ∈ 〈Z(`),Φ−1Z(k)Φ〉

with

Z(`) = Ψ−1(Φ−1Z(k)Φ)Ψ = (ΦΨ)−1Z(k)ΦΨ done!
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