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We consider:

Functions f : X — Y, X,Y finite dimensional spaces over a prime
field Ip.

Affine transformations a = ® o1, € AGL(V), V = X x Y, where
® € GL(V) and for v = (xg,yp) one has (z,y)my = (x+z9,y+vy0).

: bxx Pxy
Write & = when
( Pyx Pyy

(z,9)P = (2Pxx + yPyx, 2P xy + yPyy).



F(f) ={(z,f(z)) |z € X} CV =X xY graph of f.

DEFINITION. Two functions f,g : X — Y are CCZ equivalent,
if there exists a € AGL(V) with

M(g) =T ()

Ifa=®or (= Pxx Pxy ), = (zg,yo) as above) this
Pyx Pyy
means:

g(xPxx + f(x)Pyx +20) = f(2)Pyy +2Pxy + vo



Requiring ®y xy = 0 leads to:

DEFINITION. Two functions f,g : X — Y are EA equivalent
(extended affine), if there exists a = P o1, € AGL(V) with
(OxY)®=0xY and

M(g) =T ()

Equivalent to

g(x®Pxx + x0) = f(z)Pyy + 2Pxy + yo.

Even more special is affine equivalent where we require in addi-
tion (X x0)®d =X x0i.e. dyy =0, leading to

g(x®Pxx + xo9) = f(z)Pyy + vo.



INVARIANTS

Common Approach: Use invariants to solve equivalence prob-
lems.

EXAMPLE: If g(z) = f(z®Px + 209)Py + 2P vy + yo then f and
g have the same degree (viewed as polynomial functions).

So two functions with different degrees are not EA equivalent.

EXAMPLE: Let D(f) be the multiset of |[IT'(f) NI (f)7u|, v € V.
Then D(f) =D(g) if f and g are CCZ equivalent.



G(f) ={ac AGL(V) |T(f) =T(f)a}

is the group of CCZ automorphisms.

One has

A(f) < EA(f) < G(f),

where A(f) (EA(f)) is the group of group of affine automor-
phisms (group of EA automorphisms).

GOAL: Use (partial) knowledge about these groups to solve
equivalence problems.



OBSERVATION:

If a:T(f) —> T (g) CCZ-isomorphism then

G(g9) = o 1G(f)a.

Similarly, for o« EA-isomorphism or affine isomorphism

EA(g) = o 'EA(f)a or A(g) =a TA(f)a.



Lemma. Letp>2and f,g: X — Y EA equivalent functions.
Assume f(0) =¢g(0) =0 and f(—z) = f(x), g(—x) = g(x) for all
x € X. Then there exist &y € GL(X), ¥y € GL(Y ), such that

flxdy) =g(x)Py all zeX.



We have « = diag(—1x,1y) € EA(f) NEA(g). Let a € AGL(V)
be an EA isomorphism from f to g. Then

L, o tia € EA(g) = a 'EA(f)a.

By Sylow’s Theorem there exists v € EA(g) with

L= Ha i)

B = oo is also an EA-automorphism from f to g with

Forces (if 8= ® o1y)

P = diag(CDX, be) and v =0.



STRATEGY
Let a: ' (f) = I'(g) be an EA isomorphism (CCZ isomorphism).

1. Locate groups A < EA(f) (or G(f)) and B < EA(g) (or
G(9)).

2. Try to modify « such that B = a~1Aa (group theory!).
3. Draw conclusions from 2.
In our case: 1. A= B = (1), 2. modification a — 8 by Sylow’s

Thm. and 3. conclusion 8 = & is an affine isomorphism in
GL(V).



POWER FUNCTIONS:
Let X =Y = F,n and define p, : X — Y by pip(z) = 2.

Theorem 1. (Yoshiara 2016, D. 2018) p;, is CCZ equivalent to
py iff there exists a 0 < a < n, such that k£ = p* (mod p™ — 1) or

k¢ = p* (mod p™ — 1).
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SOME MAIORANA BENT FUNCTIONS:

Let FF = Fpn, X = F x I, Y = Fp, assume (k,p" —1) = 1 and
define py : X — Y by pp(zq,20) = Tr(z125) where Tr : F — T,
is the absolute trace. Then pu; is a bent function (of Maiorana
type):

Theorem 2. (D. 2019) uyg is EA equivalent to u, iff there exists
a 0<a<n, such that £ =p* (mod p"™ —1).

Note:

Theorem. (Budaghyan, Carlet 2011) Two bent functions are
CCZ equivalent iff they are EA equivalent.
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ON THEOREM 2:

Observation. Let (k,p* —1) =1 and 0 < k < p — 1 the unique
number with

kk=—-1 (modp"™ —1).
Define z4 € GL(V), a € F* by
20 = diag(T(a), T(a"), 1)
where T'(a) : F >z +— ax € F i.e.
(z1,22,y)70 = (azy,dza,y).
Then
Z(k) ={zala € F"} < A(uy).
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Assume p > 2 (easier than p = 2) and that u; and uy are EA

equivalent.

By the Lemma there exists ® € GL(V) which fixes X = FFx Fx0

and Y =0 x 0 x Fp such that

pe(xy, 22)Py = pp((T1,22)Px),
in particular:
Z(0), > 1 Z(k)P < A(py) = ¢ A(up)®

Goal: Show, that we can choose & such that

Z() = > 1Z(k)P.
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Simplification for &:
Definition. For a function f: X — Y and v € X the function
Dyf : X — Y defined by Dy f(x) = f(x+4v)— f(x) is the derivative
of f in direction v.

Result: If k£ is not a p-power, then DyDyu = 0 iff v € X1 = F x0.

Consequence: The group A(ug) (k not a p-power) and &y both
fix the subspace X;.

Byproduct: puj Upa, k not a p-power.
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Let W = X7 or X/X;. Then the restrictions (1 Z(k)®)y and
Z(£)y are Singer groups in GL(W) but also of A(up)w. One
knows from group theory, that Singer groups of A(uy)y are
conjugate. By adjusting ® with an element from A(uy) we may
assume

(P PZ(R)P)w = Z(Dw-

A basic theorem of group theory (Schur-Zassenhaus Theoren)
allows a further adjustment, so that we may even assume

S 1Z(k)P = Z().
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A generator of Z(k) has the form

B T(w) 0O O
20 = diag(T(w), T(W"),1)=| 0 T o |,
O 0 1

w primitive in F'*. Note ® = diag(®x,,Px,,c) ( Xo =0xF), so

O 2, ® = diag(P T(W) Py, Py T (W) Py, 1)
is a generator of Z(¢). Typical element of Z(¥)

2t = diag(T(¢), T(¢H), 1).

For a suitable (:

STy, = T(Q), PRI TWHex, = T(C)
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The characteristic polynomial of the Fy-linear operator T'(a) is

fa(X) = (X —a)(X —aP) - (X —aP" ).

Hence

fu(X) = fe(X)  and  f ;(X) = f.7(X).
Conclude

¢=p"k (modp"—1).
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ON THEOREM 1:

Set X=Y =F=Fn, V=XxY and recall p,(z) = zF. Set

za = diag(T(a), T(a")).
Then
Z(k) = {2a| a € F*} < Apy).
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GOAL: Show, that there exists & € GL(V) such that
A A
and that either & fixes X and Y, i.e.
b = diag(Px,Py) = (L=p°k (modp"—1)

or é interchanges X and Y i.e.

CI>=< 0 CDXY) = kl=p* (modyp"—-1).

Pyxy O
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Easy:

If a € AGL(V) with N'(py) = IN'(pr) then there exists even & €
GL(V) with T'(py) =T (pr)P. In particular:

G(py) = ¢ 1G(pp)®

From number theory:

Theorem. (Zsigmondy 1899) Let p be a prime, n > 1.

(1) Either there exists a prime r which divides p™ — 1 but not
pF—1 for 1 <k <n.

(2) Orn=2,p+1is a 2-power or p=2, n =6.
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Assume, that we can use Zsigmondy's Theorem and let r | p"*—1
a " Zsigmondy prime".

For m =k, let Z(m), be the Sylow r-subgroup of Z(m).

Easy: Z(m), is a Sylow r-subgroup of G(pm). By Sylow’s The-
orem we may assume.

Z0), = dL1Z(k),b.
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Let
» = diag(T(w), T(w"))

be a generator of Z(k),. The restriction of z to X and Y have
characteristic polynomials f,(X) and f .(X). Distinguish:

Case A. fu(X) # fu(X)

Case B. fu(X) = f,1(X)
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To Case A:
X and Y are the only spaces invariant under Z(£), = ®~1Z(k),®

= X and Y are the only spaces invariant under Z(¢) and ®~1z(k)®
since these groups commute with Z(¥4),

= Z(0) = > 1Z(k)> donel
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To Case B: More difficult.

Here T(w) ~ T(wk) where z = diag(T(w), T(w*)). With ¢ = T(w):

¢ O
~(50).
By Schur’'s Lemma (consider as ¢ as irreducible n x n-matrix)
{Y € F*" | o = ¢pp} = F ~ Fyn
and
H={WVecGL(V)|WVz=2V}~GL(2,p").

This group is very well studied!
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Have
Z), d 1Z(k)d < H.

WARNING: Two cyclic subgroups of order p™ — 1 in H need not
to be conjugate!

HOWEVER: Z(¢¥) and @ 1Z(k)® leave the set M(py) C V invari-
ant.
Then group theoretic arguments show, that there exists a
Ve (Z(0), P L Z(k)P)
with
zZ(0) =v o 1z(k)P)v = (dW) 1 Z(k)dWw done!
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