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Notation

F2n the finite field of order 2n.

The absolute trace over F2 of an element x ∈ F2n equals
Trn

1(x) =
∑n−1

i=0 x2i
.
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Equations in F2n

A fundamental equation
Let q be a power of 2.

The equation xq − x = 0 admits Fq as set of solutions.

Finding the solutions in Fq of an equation P(x) = 0 over Fq is equivalent
to finding the solutions of the equation (P(x), xq − x) = 0. The number of
solutions equals the degree of (P(x), xq − x).
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Equations in F2n

Equation of degree 1
The equation ax + b = 0, a 6= 0, admits one solution −b/a, in Fq

in any field.
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Equations in F2n

Equations of degree 2

A necessary condition for the existence of a solution x in F2n of the
equation x2 + x = β is that Trn

1(β) = 0.

THEOREM

The solutions of the equation x2 + x = β are x =
∑n−1

j=1 β
2j

(
∑j−1

k=0 c2k
) and

x = 1 +
∑n−1

j=1 β
2j

(
∑j−1

k=0 c2k
), where c is any (fixed) element such that

Trn
1(c) = 1.

ax2 + bx + c = 0, a 6= 0 is equivalent to
( ax

b

)2
+ ax

b = ac
b2 .

The equation ax2 + bx + c = 0 of degree 2 reduces to solving the
equation x2 + x = β
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On the equation x + x2k
= b

Equation x + x2k
= b in F22n

Define Sn,k(x) =
∑n−1

i=0 x2ki
and M =

{
ζ ∈ F22n | ζ2n+1 = 1

}
. Then,

PROPOSITION (K. H. KIM- SM 2019)

Let (k, n) = 1 and k odd. Let ζ be an element of M \ {1}. Then, for any b ∈ F?2n ,
we have

{x ∈ F22n | x + x2k
= b} = Sn,k

(
b

ζ + 1

)
+ F2
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On the equation x + x2k
= b

Proof :
Set q = 2k. As it was assumed that k is odd and (n, k) = 1, it holds (2n, k) = 1
and so the linear mapping x ∈ F22n 7−→ x + xq has kernel of dimension 1, i.e.
the equation x + xq = b has at most 2 solutions in F22n . Since
Sn,k(x) + (Sn,k(x))

q
= x + xqn

, we have

Sn,k

(
b

ζ + 1

)
+

(
Sn,k

(
b

ζ + 1

))q

+ b =
b

ζ + 1
+

(
b

ζ + 1

)qn

+ b

=
b

ζ + 1
+

b
ζqn + 1

+ b

=
b

ζ + 1
+

b
1/ζ + 1

+ b

= 0

and thus really Sn,k

(
b
ζ+1

)
, Sn,k

(
b
ζ+1

)
+ 1 ∈ F22n are the F22n−solutions of the

equation x + xq = b.

8 / 46



Equations in F2n

Equation of degree 3 : x3 + ax + b = 0

THEOREM (BERLEKAMP-RUMSEY-SOLOMON 1967-WILLIAMS 1975)

Let t1 and t2 denote the roots of t2 + bt + a3 in F22n , where a ∈ F2n , b ∈ F∗2n .
Let f (x) = x3 + ax + b over F2n . Then

f has three zeros in F2n if and only if Trn
1

(
a3

b2 + 1
)

= 0 and t1, t2 are cubes
in F2n (n even), F22n (n odd).

f has exactly one zero in F2n if and only if Trn
1

(
a3

b2 + 1
)

= 1.

f has no zero in F2n if and only if Trn
1

(
a3

b2 + 1
)

= 0 and t1, t2 are not cubes
in F2n (n even), F22n (n odd).
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Power equations

Let i be a positive integer. Let U be a multiplicative subgroup of F?2n of order
2n−1

gcd(i,2n−1) . The equation xi = a has :

one solution if a = 0 ;

no solution if a ∈ F?2n \ U ;

gcd(i, 2n − 1) solutions if a ∈ U.
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x2k+1 + x + a = 0 : motivation

Solving x2k+1 + x + a = 0 has interests in

the general theory of finite fields

the construction of difference sets with Singer parameters [Dillon 2002] ;

finding cross-correlation between m-sequences
[Helleseth-Kholosha-Ness 2007] ;

constructing error correcting codes [Bracken-Helleseth 2009] ;

the context of APN functions [Budaghyan-Carlet 2006],
[Bracken-Tan-Tan 2014], [Canteaut-Perrin-Tian 2019] ;

constructions designs [Tang 2019] ;

etc.
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x2k+1 + x + a = 0 : motivation 1

[Dillon 2002], [Dillon-Dobbertin 2004]

DEFINITION

The k-subset D of the group G of order v is a difference set with parameters
(v, k, λ) if for all nonidentity elements g of G the equation g = xy−1 has exactly
λ solutions with x and y in D.

If G is the multiplicative group of F2m of order 2m − 1, then the subset D of G is
a difference set with the so-called Singer parameters if
(v, k, λ) = (2m − 1, 2m−1, 2m−2) (or the complementary parameters
(2m − 1, 2m−1 − 1, 2m−2 − 1)).

+ the polynomial x2k+1 + x + a allows to construct difference sets with
Singer parameters (v, k, λ) = (2m − 1, 2m−1, 2m−2) with m ≥ 3.
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x2k+1 + x + a = 0 : motivation 2

THEOREM (BUDAGHYAN-CARLET 2006)

Under some conditions, if G(x) := x2i+1 + cx2i
+ c2k

x + 1 has no solution x such
that x2k+1 = 1 the F(x) = x(x2i

+ x2k
+ cx2k+i

) + x2i
(c2k

x2k
+ bx2k+i

) + x2k+i+2k
is

APN on F22k .

[Bracken-Tan-Tan 2014] constructed explicitly the polynomial G (when k even
and 3 does not divide k).

+ The polynomial G relates to the polynomial x2k+1 + x + a = 0 : substituting
sx + c to x with s2i

= c2i
+ c2k

we get G(sx + c) = s2i+1(x2k+1 + x + a).
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x2k+1 + x + a = 0 : motivation 3

DEFINITION

Let s(t) and v(t) be two binary m-sequences. s(t) = Trm
1 (αt) where α is an

element of order n = 2m − 1. Assume v(t) = u(dt) where u(t) = Trk
1(βt) where

β is an element of order 2m/2 − 1. Let d such that gcd(d, 2m/2 − 1) = 1. The
cross-correlation function Cd(τ) between the two m-sequences s(t) and v(t) is
defined (for τ = 0, 1, · · · , 2k − 2) by Cd(τ) =

∑n−1
t=0 (−1)s(t)+v(t+τ).

[Helleseth-Kholosha-Ness 2007] gave a three-valued cross-correlation
function between the pairs of sequences of different lengths.

THEOREM (HELLESETH-KHOLOSHA-NESS 2007)

Let m = 2k and d(2l + 1) ≡ 2i (mod 2k − 1) for some odd k and integer l with
0 < l < k and gcd(l, k) = 1. Then the cross-correlation function Cd(τ) has the
following distribution :
−1− 2k+1occurs 2k−1−1

3 times;−1occurs 2k−1 − 1times;−1 + 2koccurs 2k+1
3 times.
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x2k+1 + x + a = 0 : motivation 3

To prove their main result above, they need to compute three exponential
sums Si(a) =

∑
y∈F2m (−1)Trm

1 (riay2l+1)+Trk
1(y2k+1) for i = 0, 1

S2(a) =
∑

y∈F2m (−1)Trm
1 (r−1ay2l+1)+Trk

1(y2k+1).
In order to determine S0(a), they need to consider zeros in F2k of the affine
polynomial Aa(v) = a2l

v22l
+ v2l

+ av + 1 where l < k and (l, k) = 1
The distribution of the zeros in F2n of Aa(v) = a2l

v22l
+ v2l

+ av + 1 will
determine to a large extent the distribution of their cross-correlation function.

THEOREM (HELLESETH-KHOLOSHA-NESS 2007)

Let Mi = {a | Aa(v) has exactly i zeros in F2n} Then Aa(v) has either one, two,
or four zeros in F2n . For i ∈ {1, 2, 4} we have a ∈ Mi if and only if
x2k+1 + x + a = 0 has exactly i− 1 zeros in F2n .
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x2k+1 + x + a = 0 : motivation 4

The binary primitive triple-error-correcting BCH code is a cyclic code of
minimum distance d = 7 with generator polynomial g(x) having zeros α ,α3

and α5 where α is a primitive (2n − 1)-root of unit in F2n . The zero set of the
code is said to be the triple 1, 3, 5. Let d1 = 1, d2 = 3 and d3 = 5. Then the
parity-check matrix

H =

 1 αd1 α2d1 . . . α(2n−2)d1

1 αd2 α2d2 . . . α(2n−2)d2

1 αd3 α2d3 . . . α(2n−2)d3

 . (1)
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x2k+1 + x + a = 0 : motivation 4

[Bracken-Helleseth 2009] constructed triple-error-correcting BCH-like codes.

THEOREM (BRACKEN-HELLESETH 2009)

Let n be odd and gcd(k, n) = 1. Then the error-correcting code constructed
using the zero set 1, 2k + 1, 23k + 1 is triple-error-correcting.

Their proof shows an interesting connection to the equation of the form
x2k+1 + bx2k + cx = d defined on F2n which has no more than three solutions
when gcd(k, n) = 1 for all b,c, and d in F2n (as a consequence of a result in
[Bluher 2004] on x2k+1 + x + a = 0).
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x2k+1 + x + a = 0 : motivation 5

DEFINITION

Let P be a set of v elements and let B be a set of k-subsets of P. Let t be
positive integer with t ≤ k. The pair (P,B) is called incident structure. It said
to be a t − (v, k, λ) design if every t-subset of P is contained in exactly λ
elements of B.
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x2k+1 + x + a = 0 : motivation 5

[Tang 2019] constructed 3-designs : let q = 2n and let
Bs := {(x + 1)s + xs | x ∈ Fq}.

PROPOSITION (TANG 2019)

Let n = 3k ± 1 and s = 22k − 2k + 1 where i an even integer. Let d = 1/s
(mod 2n − 1). Then the incidence structure (Fq, {π(Bs) | π(x) = ax + b}) is
3-design if and only if #{x ∈ F2n | udx + (1 + ud)2k+1 + x2k+1 + 1 = 0} is
independent of u ∈ Fq \ F2.

The equation udx + (1 + ud)2k+1 + x2k+1 + 1 = 0 can be reduced to
x2k+1 + x + a = 0.
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x2k+1 + x + a = 0 : preliminaries

Müller-Cohen-Matthews polynomials are defined over F2n as follows :

fk,d(X) :=
Tk(Xc)

d

X2k

where

Tk(X) :=

k−1∑
i=0

X2i
and cd = 2k + 1.

A basic property for such polynomials is :

THEOREM (1)

[Müller-Cohen-Matthews 1994, Dillon-Dobbertin 2004]
Let k and n be two positive integers with (k, n) = 1.

1 If k is odd, then fk,2k+1 is a permutation on F2n .

2 If k is even, then fk,2k+1 is a 2-to-1 on F2n .
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x2k+1 + x + a = 0 : preliminaries

The Dickson polynomial of the first kind of degree k in indeterminate x and
with parameter a ∈ F∗2n is

Dk(x, a) =

bk/2c∑
i=0

k
k − i

(
k − i

i

)
akxk−2i,

where bk/2c denotes the largest integer less than or equal to k/2.
In this talk, we consider only Dickson polynomials Dk(x, 1), that we shall
denote Dk(x).

PROPOSITION

For any positive integer k and any x ∈ F2n , we have

Dk

(
x +

1
x

)
= xk +

1
xk . (2)
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Known results about Pa(x) := x2k+1 + x + a = 0 when (n, k) = 1

Let Na be the number of solutions of the equation Pa(x) := x2k+1 + x + a = 0 in
F2n .

In 2004 : [Bluher 2004] the number of solutions Na are only 0, 1 and 3
when (k, n) = 1.

In 2008 : [Helleseth-Kholosha 2008] got criteria for Na = 1 and an explicit
expression of the unique solution when (k, n) = 1.

In 2014 : [Bracken-Tan-Tan 2014] presented a criterion for Na = 0 when
n is even and (k, n) = 1.
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On the equation xq+1 + x + a = 0 ; q = 2k

Notation : q = 2k.
We will exploit a recent polynomial identity involving Dickson polynomials :

THEOREM (2)

[Bluher 2016]
In the polynomial ring Fq [X,Y], we have the identity

Xq2−1 +

(
k∑

i=1

Yq−2i

)
Xq−1 + Yq−1 =

∏
w∈F∗q

(Dq+1(wX)− Y) .
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Solving Pa(x) := xq+1 + x + a = 0 ; q = 2k

If k is odd, since (q− 1, 2n − 1) = 1, the zeros of Pa(x) are the images of the
zeros of Pa(xq−1) by the map x 7→ xq−1.

Now fk,q+1 is a permutation polynomial of F2n by Theorem 1. Therefore, for any
a ∈ F∗2n , there exists a unique Y in F∗2n such that a = 1

fk,q+1( 1
Y )

2
q
. Hence, we have

Pa
(
xq−1) = xq2−1 + xq−1 +

1

fk,q+1
( 1

Y

) 2
q

(3)

Substituting tx to X in the above identity with tq2−q = YqTk
( 1

Y

)2
, we get :

Pa
(
xq−1) = xq2−1 + xq−1 +

1

fk,q+1
( 1

Y

) 2
q

=
1

Yq−1
(
fk,q+1

( 1
Y

)) 2
q

(
Xq2−1 +

(
k∑

i=1

Yq−2i

)
Xq−1 + Yq−1

)
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On the equation xq+1 + x + a = 0 ; q = 2k

By Theorem 2 :

Xq2−1 +

(
k∑

i=1

Yq−2i

)
Xq−1 + Yq−1 =

∏
w∈F∗q

(Dq+1 (wX)− Y)

Therefore

Pa
(
xq−1) =

1

Yq−1
(
fk,q+1

( 1
Y

)) 2
q

∏
w∈F∗q

(Dq+1 (wtx)− Y)

+ when k is odd, finding the zeros of Pa(xq−1) amounts to determine
preimages of Y under the Dickson polynomial Dq+1.
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Solving Pa(x) := xq+1 + x + a = 0 ; q = 2k

When k is even, fk,q+1 is 2-to-1, Fortunately, we can go back to the odd case
by rewriting the equation. Indeed, for x ∈ F2n ,

Pa(x) = x2k+1 + x + a =
(

x2n−k+1 + x2n−k
+ a2n−k

)2k

=
(

(x + 1)2n−k+1 + (x + 1) + a2n−k
)2k

and so

{x ∈ F2n | Pa(x) = 0} =
{

x + 1 | x2n−k+1 + x + a2n−k
= 0, x ∈ F2n

}
. (4)

+ If k is even, then n− k is odd and we can reduce to the odd case.
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Solving Pa(x) := x2k+1 + x + a = 0

We now summarize all the above discussions in the following theorem.

THEOREM (K. H. KIM- SM 2019)

Let k and n be two positive integers such that (k, n) = 1.

1 Let k be odd and q = 2k. Let Y ∈ F∗2n be (uniquely) defined by
a = 1

fk,q+1( 1
Y )

2
q
. Then,

{x ∈ F2n | Pa(x) = 0} =

 zq−1

YTk
( 1

Y

) 2
q
|Dq+1(z) = Y, z ∈ F2n

 .

2 Let k be even and q′ = 2n−k. Let Y ′ ∈ F∗2n be (uniquely) defined by
aq′ = 1

fn−k,q′+1( 1
Y′ )

2
q′

. Then,

{x ∈ F2n | Pa(x) = 0} =

1 +
zq′−1

Y ′Tn−k
( 1

Y′
) 2

q′
|Dq′+1(z) = Y ′, z ∈ F2n

 .
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Solving Pa(x) := xq+1 + x + a = 0 ; q = 2k

+ we can split the problem of finding the zeros in F2n of Pa into two
independent problems with odd k.

PROBLEM (1)

For a ∈ F∗2n , find the unique element Y in F∗2n such that

a
q
2 =

1
fk,q+1

( 1
Y

) . (5)

PROBLEM (2)

For Y ∈ F∗2n , find the preimages in F2n of Y under the Dickson polynomial Dq+1,
that is, find the elements of the set

D−1
q+1(Y) = {z ∈ F?2n | Dq+1(z) = Y}. (6)
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Recall :

PROPOSITION

Let n be a positive integer. Then, every element z of F?2n can be written (twice)
z = c + 1

c where c ∈ F?2n ∪M with c 6= 1 and where M = {ζ ∈ F22n | ζ2n+1 = 1}
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

One has Y = T + 1
T where T ∈ F2n \ F2 or T ∈ M \ {1} where

M =
{
ζ ∈ F22n | ζ2n+1 = 1

}
(observe that M \ {1} ⊂ F22n \ F2n ). Now,

1
Y

=

(
1

T + 1

)2

+
1

T + 1
.
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

The next step is to use an approach used in [Dillon-Dobbertin 2004] by
introducing ∆k(X) = (X + 1)22k−2k+1 + X22k−2k+1 + 1 and a permutation on F2n

defined as

Qk,k′(X) =


∑k′

i=1 X2ik

X2k+1 if k′ is odd∑k′
i=1 X2ik

+1
X2k+1 if k′ is even

(7)

where k′ is the inverse of k modulo n, that is, kk′ = 1 mod n. We then recall
two properties of these polynomials [Dillon 1999] :

∆k(X) =
(

Qk,k′

(
X + X2k

))−1
= fk,q+1(X + X2). (8)
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Recall : ∆k(X) =
(

Qk,k′

(
X + X2k

))−1
= fk,q+1(X + X2) and 1

Y =
(

1
T+1

)2
+ 1

T+1 .

Collecting together all the above discussion, we get

a
q
2 =

(
fk,q+1

(
1
Y

))−1

⇐⇒ a−
q
2 = ∆k

(
1

T + 1

)
⇐⇒ a−

q
2 =

1

Qk,k′

((
1

T+1

)q
+
(

1
T+1

)) (9)
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

PROPOSITION (K. H. KIM- SM 2019)

Let a ∈ F?2n . Let T ∈ F2n \ F2 ∪M \ {1} be a solution of

Rk,k′

(
a−

q
2

)
=

(
1

T + 1

)q

+

(
1

T + 1

)
where Rk,k′ is the compositional inverse of 1/Qk,k′ . Then, Y = T + 1

T is the
unique solution of a

q
2 =

(
fk,q+1

( 1
Y

))−1
.

the proposition above shows that solving Problem 1 amounts to find the
solutions of a linear equation of the form xq + x = b. The polynomial
expression of the solutions of such a linear equation has been given.
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Define Sn,k(x) =
∑n−1

i=0 x2ki
. Then,

PROPOSITION

Let ζ be an element of M \ {1}. Then, for any b ∈ F?2n , we have

{x ∈ F22n | x + xq = b} = Sn,k

(
b

ζ + 1

)
+ F2
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

We can now explicit the solutions of Problem 1.

THEOREM (K. H. KIM- SM 2019)

Let a ∈ F?2n . Let k′ be the inverse of k modulo n. Then, the unique solution of
Problem 1 in F?2n is Y = T + 1

T where

T =
1

Sn,k

(
Rk,k′

(
a−

q
2
)

ζ+1

) + 1

where ζ denotes any element of F22n such that ζ2n+1 = 1, Sn,k(x) =
∑n−1

i=0 x2ki

and Rk,k′ stands for the compositional inverse of 1/Qk,k′ defined by (7).
Furthermore, we have

Y =
1

Sn,k

(
Rk,k′

(
a−

q
2
)

ζ+1

)
+

(
Sn,k

(
Rk,k′

(
a−

q
2
)

ζ+1

))2
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On Problem 1 : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

REMARK

One can derive the polynomial representation of the inverse Rk,k′ of the
mapping induced by 1/Qk,k′ on F2n . This question has been studied in
[Dillon-Dobbertin 2004] where it is introduced the following sequences of
polynomials :

A1(x) = x, A2(x) = xq+1, Ai+2(x) = xqi+1
Ai+1(x) + xqi+1−qi

Ai(x), i ≥ 1,

B1(x) = 0, B2(x) = xq−1, Bi+2(x) = xqi+1
Bi+1(x) + xqi+1−qi

Bi(x), i ≥ 1.

The polynomial expression of Rk,k′ is then Rk,k′(x) =
∑k′

i=1 Ai(x) + Bk′(x).
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On Problem 2 : find D−1
q+1(Y) = {z ∈ F?2n | Dq+1(z) = Y}

Write z = c + 1
c where c ∈ F?2n or c ∈ M \ {1}. One gets

Y = Dq+1(z) = cq+1 +
1

cq+1 = T +
1
T

(10)

with T = cq+1

The equation T + 1
T = Y has two solutions in F?2n ∪M for any Y ∈ F?2n because

it is equivalent to the quadratic equation
( T

Y

)2
+ T

Y = 1
Y2 and that Tr2n

1

( 1
Y

)
= 0

since Y ∈ F2n . In fact, we have two situations that occur depending on the
value of Trn

1

( 1
Y

)
:

If Trn
1

( 1
Y

)
= 0, T + 1

T = Y has two solutions in F2n \ F2 ;

If Trn
1

( 1
Y

)
= 1, T + 1

T = Y has two solutions in M \ {1}.

We shall now study separately those two cases.
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On Problem 2 : find D−1
q+1(Y) = {z ∈ F?2n | Dq+1(z) = Y}

Suppose that Trn
1

( 1
Y

)
= 0. Denote T and 1

T the two distinct elements of
F2n \ F2 such that T + 1

T = Y. Let us now turn our attention to the equation
cq+1 = T with c ∈ F?2n ∪M, c 6= 1. Necessarily, c ∈ F?2n Recall that

(q + 1, 2n − 1) =

{
1 if n is odd
3 if n is even

Therefore, there are 0 or 3 elements c in F2n \ F2 such that cq+1 = T when n is
even while there is a unique c when n is odd.
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On Problem 2 : find D−1
q+1(Y) = {z ∈ F?2n | Dq+1(z) = Y}

We can then conclude from the above discussion and calculation the
following result.

THEOREM (K. H. KIM- SM 2019)

Let Y ∈ F?2n such that Trn
1

( 1
Y

)
= 0. We have

1 If n is even, let T be any element of F2n \ F2 such that T + 1
T = Y. Then

D−1
q+1(Y) =

{
cw +

1
cw
| cq+1 = T, c ∈ F2n \ F2 , w ∈ F?4

}
Notably, D−1

q+1(Y) = ∅ if there is no c in F2n \ F2 such that cq+1 = T.

2 If n is odd, let T be any element of F2n \ F2 such that T + 1
T = Y. Then

D−1
q+1(Y) =

{
T

1
q+1 +

1

T
1

q+1

}
.
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On Problem 2 : find D−1
q+1(Y) = {z ∈ F?2n | Dq+1(z) = Y}

Next, suppose Trn
1

( 1
Y

)
= 1. In that case, the two elements T and 1

T such that
T + 1

T = Y are both in M \ {1}. Now,

(q + 1, 2n + 1) =

{
1 if n is even
3 if n is odd

THEOREM (K. H. KIM- SM 2019)

Let Y ∈ F?2n such that Trn
1

( 1
Y

)
= 1. We have

1 If n is odd, let T be any element of M \ {1} such that T + 1
T = Y. Then

D−1
q+1(Y) =

{
cw +

1
cw
| cq+1 = T, c ∈ F2n \ F2 , w ∈ F?4

}
Notably, D−1

q+1(Y) = ∅ if there is no c in F2n \ F2 such that cq+1 = T.

2 If n is even, let T be any element of M \ {1} such that T + 1
T = Y. Then

D−1
q+1(Y) =

{
T

1
q+1 +

1

T
1

q+1

}
.
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Solution of the equation (*) x2k+1 + x + a = 0 in F2n with (n, k) = 1

Let k′ be the inverse of k modulo n. Let ζ ∈ F22n such that ζ 6= 1 and ζ2n+1 = 1.
Define

T =
1

Sn,k

(
Rk,k′

(
a−

q
2
)

ζ+1

) + 1.

THEOREM (n IS EVEN (THEN k IS NECESSARILY ODD)-K. H. KIM- SM 2019)

1 If T is in F2n but is not a cube of an element of F2n , Equation (*) has no
solutions in F2n .

2 If T is in F2n and is a cube of an element of F2n , Equation (*) has three

distinct solutions in F2n that can be written as (cw+ 1
cw )

q−1

YT
2
q

k ( 1
Y )

where cq+1 = T,

w ∈ F?4 and Y = T + 1
T .

3 If T is in F22n \ F2n ; Equation (*) has a unique solution in F2n that can be

written as

(
T

1
q+1 + 1

T
1

q+1

)q−1

YT
2
q

k ( 1
Y )

where Y = T + 1
T .
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Solution of the equation (*) x2k+1 + x + a = 0 in F2n with (n, k) = 1

THEOREM (n IS ODD AND k ODD-K. H. KIM- SM 2019)

Let M be the multiplicative subgroup of F22n of order 2n + 1. Then, we have :

1 If T is in M but is not a cube of an element of M, the equation has no
solutions in F2n .

2 If T is in M and is a cube of an element of M, the equation has three

distinct solutions in F2n that can be written as (cw+ 1
cw )

q−1

YT
2
q

k ( 1
Y )

where cq+1 = T,

w ∈ F?4 and Y = T + 1
T .

3 If T is in F2n ; the equation has a unique solution in F2n that can be written

as 1 +

(
T

1
q+1 + 1

T
1

q+1

)q−1

YT
2
q

k ( 1
Y )

where Y = T + 1
T .
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Solution of the equation (*) x2k+1 + x + a = 0 in F2n with (n, k) = 1

Let l = n− k, q′ = 2l and l′ the inverse of l modulo n.

T ′ =
1

Sn,l

Rl,l′

(
a−

(q′)2
2

)
ζ+1


+ 1.

THEOREM (n ODD, k EVEN-K. H. KIM- SM 2019)

Let M be the multiplicative subgroup of F22n of order 2n + 1. Then, we have :

1 If T ′ is in M but is not a cube of M, equation (*) has no solutions in F2n .

2 If T ′ is in M and is a cube of M, equation (*) has three distinct solutions

in F2n : (dw+ 1
dw )

q−1

Y′T
2
q

k ( 1
Y′ )

where dq′+1 = T ′, w ∈ F?4 and Y ′ = T ′ + 1
T′ .

3 If T ′ is in F2n ; equation (*) has one solution : 1 +

(
T
′ 1

q′+1 + 1

T
′ 1

q′+1

)q′−1

Y′T
2
q

k ( 1
Y′ )

where Y ′ = T ′ + 1
T′ . 43 / 46



Solution of the equation (*) x3 + x + a = 0 in F2n , n even

Let ζ ∈ F22n such that ζ 6= 1 and ζ2n+1 = 1. Define

T =
1

Sn,1

(
a−1

ζ+1

) + 1.

where Sn,1(x) =
∑n−1

i=0 x2i
.

1 If T is in F2n but is not a cube of an element of F2n , Equation (*) has no
solutions in F2n .

2 If T is in F2n and is a cube of an element of F2n , Equation (*) has three
distinct solutions in F2n that can be written as cw + 1

cw where c3 = T,
w ∈ F?4 and Y = T + 1

T .

3 If T is in F22n \ F2n ; Equation (*) has a unique solution in F2n that can be
written as T

1
3 + 1

T
1
3

where Y = T + 1
T .
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Solution of the equation (*) x3 + x + a = 0 in F2n , n odd

Let ζ ∈ F22n such that ζ 6= 1 and ζ2n+1 = 1. Define

T =
1

Sn,1

(
a−1

ζ+1

) + 1.

where Sn,1(x) =
∑n−1

i=0 x2i
.

Let M be the multiplicative subgroup of F22n of order 2n + 1. Then, we have :

1 If T is in M but is not a cube of an element of M, the equation has no
solutions in F2n .

2 If T is in M and is a cube of an element of M, the equation has three
distinct solutions in F2n that can be written as cw + 1

cw where c3 = T,
w ∈ F?4 and Y = T + 1

T .

3 If T is in F2n ; the equation has a unique solution in F2n that can be written
as 1 + T

1
3 + 1

T
1
3

where Y = T + 1
T .
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Conclusions

Partial results about the zeros of Pa(x) = x2k+1 + x + a in F2n have been
obtained in [Bluher 2004], [Helleseth-Kholosha 2008],[Helleseth-Kholosha
2010] and [Bracken-Tan-Tan 2014].

We provided explicit expression of all possible roots in F2n of Pa(x) in
terms of a when (n, k) = 1.

We showed that the problem of finding zeros in F2n of Pa(x) in fact can be
divided into two problems with odd k : to find the unique preimage of an
element in F2n under a Müller-Cohen-Matthews (MCM) polynomial and to
find preimages of an element in F2n under a Dickson polynomial.
We completely solved these two independent problems.
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