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Disclaimer

This talk is a Claude-free zone.

At least, it is in the sense that his name doesn’t appear.

Except in this slide.

That said, he has been a model researcher and an inspiration to me from
my first timid steps into research as an undergraduate.

Claude – thank you.
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Key definitions we’d better worry about, part I

Throughout, q = pe for some odd prime p.

Definition
A polynomial L ∈ Fq[X ] is called linearised if

L(X ) =
∑
i

aiX
pi .

Such polynomials represent all linear transformations of Fq, where we are
viewing Fq as a vector space over Fp.

Equivalently, they represent all group homomorphisms on (Fpe ,+).
In particular, they satisfy L(x + y) = L(x) + L(y) for all x , y ∈ Fq.
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Key definitions we’d better worry about, part II

Definition
A polynomial f ∈ Fq[X ] is a Dembowski-Ostrom (DO) polynomial if

f (X ) =
∑
i ,j

aijX
pi+pj .

These polynomials are closely related to quadratic and bilinear forms, but
that wasn’t the original reason we studied them.

Definition
We say f (X ) is a permutation polynomial (PP) over Fq if f (Fq) = Fq

i.e. f induces a bijection of Fq under evaluation.

These are wildly popular as a research topic.
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A preemptive key definition

For any f ∈ Fq[X ], we define a “multiplication” ? on Fq by

x ? y = f (x + y)− f (x)− f (y).

Notes:

The multiplication is necessarily commutative.

In odd characteristic, you have a left and right distributive law with +
and ? if and only if f is a DO polynomial.
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The key definition

Definition (Dembowski & Ostrom, 1968 – to construct planes)

We say f ∈ Fq[X ] is planar over Fq if X ? a is a PP over Fq for all a ∈ F?q.

Note: adding a constant or a linearised polynomial to f (X ) does not
change its planarity. For simplicity, it is assumed that there are no
constant or linearised terms involved.

Note: composing f (X ) with a linearised PP, inside or out, does not change
its planarity.

Although planar functions were originally defined in a more general setting,
all known examples can be represented by polynomials over finite fields.
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Existence

Easy.

The monomial f (X ) = X 2 is planar over Fq if and only if q is odd.

For any a ∈ F?q, we have X ? a = 2aX .

If q is odd, then this is a linear polynomial, which is always a PP.

If q is even, then we are in characteristic 2 and so this is the zero map.

Note: The above argument is dependent only on the characteristic;
finiteness is not necessary.
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Equivalence

Definition
Let f , h be two planar functions over Fq. Then f , h are equivalent if there
exists linearised PPs L,M ∈ Fq[X ] satisfying

L(f (X )) ≡ h(M(X )) mod (X q − X ).

Yes, this is EA-equivalence.

CCZ equivalence reduces to EA-equivalence for planar functions
Budaghyan & Helleseth (2011).

Equivalent planar functions define isomorphic planes. The converse isn’t
quite as nice. . .
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Classification results

Prime fields – f is planar if and only if deg(f ) = 2.
Established in 3 different ways, and more or less simultaneously, by
Rónyai & Szőnyi (1989); Hiramine (1989); and Gluck (1990).

Restricting to monomials X n only:

I Over Fp, by Johnson (1987).
I Over Fp2 , by Coulter (2006).
I Over Fp4 , by Coulter & Lazebnik (2012).
I Over Fq, provided q > (n − 1)4 and p - n, by Zieve (2013).

(This is the exceptionality situation.)

No further classification results. Sort of. . .
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Rónyai & Szőnyi (1989); Hiramine (1989); and Gluck (1990).

Restricting to monomials X n only:
I Over Fp, by Johnson (1987).
I Over Fp2 , by Coulter (2006).
I Over Fp4 , by Coulter & Lazebnik (2012).
I Over Fq, provided q > (n − 1)4 and p - n, by Zieve (2013).

(This is the exceptionality situation.)

No further classification results. Sort of. . .

Robert Coulter (UD) Planar fns and commutative sfds June 2019 9 / 41



Classification results

Prime fields – f is planar if and only if deg(f ) = 2.
Established in 3 different ways, and more or less simultaneously, by
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Conjecture

The Dembowski-Ostrom Conjecture (1968, you can guess who.)
If the reduced polynomial f ∈ Fpe [X ] is planar, then f is a DO polynomial
(ignoring constant and linearised terms).

Established for prime fields.

False in characteristic 3, the smallest counterexample occurs in F81.

Open for characteristic at least 5.
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Constructions

Known examples.

X pα+1 is planar over Fpe if and only if e/(α, e) is odd.
Dembowski & Ostrom (1968); Coulter & Matthews (1997).

X (pα+1)/2 is planar over Fpe if and only if p = 3 and (α, 2e) = 1.
Coulter & Matthews (1997) – this is the class of counterexamples.

X 10 ± X 6 − X 2 is planar over Fpe if and only if p = 3 and e is 2 or
odd.
Coulter & Matthews (1997); Ding & Yuan (2006).

A complex looking DO class, details omitted for brevity.
Budaghyan & Helleseth (2008).

There are quite a number of additional classes known, but all are
equivalent to the above. (I think! We all know how difficult the
equivalence issue can be.)
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Off on an algebraic tangent

Definition
A finite semifield R is a finite algebraic system which has all of the
standard properties of a finite field except, perhaps, associativity and
commutativity of multiplication.
If we do not insist upon the existence of unity, then we talk of a
presemifield.

It is easy to construct commutative presemifields which are not
semifields – take any non-prime finite field Fq and any non-trivial
automorphism σ of Fq. Then the elements of Fq, along with field
addition and the multiplication ? defined by x ? y = (xy)σ form a
presemifield that does not have unity.

There is a standard method to transform a presemifield into an
equivalent semifield which will preserve commutativity if you have it.
Consequently, in terms of discussing equivalence issues, you can talk
of presemifields and semifields interchangeably (and presemifields are
often easier to deal with in an algebraic sense).
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Nice fact

The additive structure of a semifield R is necessarily elementary abelian.

That means the elements of R can be associated with the elements of a
finite field Fq of the appropriate order.

Under this association, the multiplication ? or R can be viewed as a
bivariate function over Fq, and since we have left and right distributive
laws in R, ? must look like

x ? y =
∑
i ,j

aijx
pi yp

j
.
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The Nuclei

Consider the following three subsets of a semifield R = (Fq,+, ?):

Nl(R) = {α ∈ R : (α ? x) ? y = α ? (x ? y) for all x , y ∈ R}
Nm(R) = {α ∈ R : (x ? α) ? y = x ? (α ? y) for all x , y ∈ R}
Nr (R) = {α ∈ R : (x ? y) ? α = x ? (y ? α) for all x , y ∈ R}.

These are known as the left, middle and right nucleus, respectively.

We also define the nucleus by N = Nl ∩Nm ∩Nr

It is easy to show all of these sets are finite fields.

Any semifield can be viewed as a vector space over its nucleus.
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Bilinear/quadratic form idea

When we have a commutative semifield, we can define a polynomial
f ∈ Fq[X ] by f (X ) = 1

2(X ? X ).

Then, using a well-known idea, one can recover ? from f via

x ? y = f (x + y)− f (x)− f (y).

This is the same “function-defined” multiplication from before, but now
we have no zero divisors.

This implies f is a planar DO polynomial.
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Key connection

Theorem (Coulter & Henderson, 2008)

If f ∈ Fq[X ] is a planar DO polynomial, then 〈Fq,+, ?〉 is a
commutative presemifield, where

x ? y = f (x + y)− f (x)− f (y).

If 〈Fq,+, ?〉 is a commutative presemifield, then f (X ) = 1
2(X ? X ) is

a planar DO polynomial.

So we have an equivalence between commutative semifields of odd order
and planar DO polynomials, which means results on commutative
semifields have a direct implication to planar DOs.

Robert Coulter (UD) Planar fns and commutative sfds June 2019 16 / 41



Key connection

Theorem (Coulter & Henderson, 2008)

If f ∈ Fq[X ] is a planar DO polynomial, then 〈Fq,+, ?〉 is a
commutative presemifield, where

x ? y = f (x + y)− f (x)− f (y).

If 〈Fq,+, ?〉 is a commutative presemifield, then f (X ) = 1
2(X ? X ) is

a planar DO polynomial.

So we have an equivalence between commutative semifields of odd order
and planar DO polynomials, which means results on commutative
semifields have a direct implication to planar DOs.

Robert Coulter (UD) Planar fns and commutative sfds June 2019 16 / 41



Some constructions first

I’ll list only those predating the planar DO connection, or originally
discovered without the use of them.

The connection has meant basically all recently discovered commutative
semifields (inequivalent or not) have been established via the planar DOs.

They fall into two types – constructions of dimension 2 over the middle
nucleus, and Albert’s twisted fields.
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Some constructions first

Albert’s twisted fields (Albert, 1952).

Let q = pe be odd with e ≥ 3. Fix α so that e/ gcd(α, e) is odd, and let θ
be the field automorphism θ(x) = xp

α
.

Then field addition and the multiplication ? defined by

x ? y = xyθ + xθy

together define a commutative presemifield.
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Some constructions first

For the remaining ones, we have a standard format:
Let {1, λ} be a basis for Fq2 over Fq and k a non-square in Fq.

Dickson (1906)
For θ a non-trivial automorphism of Fq, define the multiplication by

(a + λb) ? (c + λd) = ac + k(bd)θ + λ(ad + bc).

Cohen & Ganley (1982)
For p = 3 and e ≥ 3, define the multiplication by

(a + λb) ? (c + λd) = ac + kbd − k3(bd)9 + λ(ad + bc + k(bd)3).

Ganley (1982)
For p = 3 and e ≥ 3 odd, define the multiplication by

(a + λb) ? (c + λd) = ac − b9d − bd9 + λ(ad + bc + (bd)3).

Penttila & Williams (2000), sporadic of order 310

For p = 3 and e = 10, define the multiplication by

(a + λb) ? (c + λd) = ac + (bd)9 + λ(ad + bc + (bd)27).
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Planar DOs from the known commutative semifields

Albert’s twisted fields actually correspond to the planar monomial X pα+1,
so we know a planar DO that describes each of these.

This wasn’t true for the rest until Kosick and I developed a simple method
for determining a planar DO that will construct each of these, so simple
that the paper was rejected. (Some forms have come up since in other
works, but they were all in her thesis – basically it’s not that interesting.)

NOTE: that doesn’t mean that we know all of the planar DOs that
describe these classes. . . That is interesting, and therein lies a problem.
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Equivalence – Isotopism

Let R1 = 〈Fq,+, ?〉 and R2 = 〈Fq,+, ∗〉 be two presemifields.

Then R1 and R2 are isotopic if and only if there exists three linearised
PPs L,M,N ∈ Fq[X ] such that

∀x , y ∈ Fq : M(x) ? N(y) = L(x ∗ y).

We say that the triple (M,N, L) is an isotopism between R1 and R2. If
M = N, then this is called a strong isotopism.
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Isotopism and isomorphism

Theorem (Albert, 1960)
Two presemifields coordinatise isomorphic planes if and only if they are
isotopic.

For commutative presemifields and planar DO polynomials, EA-equivalence
of the DO polynomials corresponds exactly to the strong isotopism
situation.

So isotopism of commutative presemifields is something more general than
EA-equivalence.

This is why I said earlier that equivalence and
isomorphism don’t play nicely. One way works – equivalence implies
isomorphism – but the other doesn’t.
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Classification results for commutative semifields

A commutative semifield of order p is necessarily a finite field.

A commutative semifield of order p2 is necessarily a finite field.
(Knuth, 1965; probably earlier)

A commutative semifield of dimension 3 over its nucleus is either
isotopic to a finite field or Albert’s twisted field.
In particular, a commutative semifield of order p3 is necessarily a
finite field or Albert’s twisted field.
(Menichetti, 1977)

We can deal with these types completely!
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Finite fields and Albert’s twisted fields

Theorem (Coulter & Henderson, 2008)
Any planar DO polynomial that represents a finite field or one of Albert’s
twisted fields of order q is precisely of the form

L(M(X )p
α+1) mod (X q − X ),

where L,M are linearised PPs, and e/ gcd(α, e) is odd.

The case where α ≡ 0 mod e corresponds to the finite field, while all other
choices of α correspond to a twisted field example.
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More classification results for commutative semifields

If n is prime and q is large enough with respect to n, then any
commutative semifield of order qn with nucleus of order q is isotopic
to either a finite field or one of Albert’s twisted fields.
(Menichetti, 1996)

If a commutative semifield is dimension 2 over its middle nucleus and
dimension 4 over its nucleus, then it must be a finite field or a
Dickson semifield.
(Cardinali, Polverino & Trombetti, 2006; though predated by. . . )

If a commutative semifield is dimension 2 over its middle nucleus and
dimension 2n over its nucleus, and q ≥ 4n2 − 8n + 2, then it must be
a finite field or a Dickson semifield.
(Blokhuis, Lavrauw & Ball, 2003)

Unlike the field and twisted field case, we do not have a good
characterisation of all planar DOs that represent a Dickson semifield.
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An awkward truth

Theorem (Coulter & Henderson, 2008)
Let R1 = (Fq,+, ?) and R2 = (Fq,+, ∗) be isotopic commutative
presemifields of characteristic p. Suppose the order of the middle nuclei
and nuclei of corresponding commutative semifields is pm and pn,
respectively. One of the following statements must hold.

1 m/n is odd and R1 and R2 are strongly isotopic.

2 m/n is even and either R1 and R2 are strongly isotopic or the only
isotopisms between any two corresponding commutative semifields R′1
and R′2 are of the form (α ?N,N, L) where α is a non-square element
of Nm(R′1).

The Dickson semifields fall into that second category.
This is what I call the strong isotopy problem, and it’s the stumbling block
in our understanding of isotopy classes for commutative semifields.
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The strong isotopy problem

We have an interesting phenomenon occurring.

Some commutative semifield isotopy classes split into two strong isotopy
classes.

Some do not.

We don’t actually know for most known candidate classes.

Problem
Determine why some isotopy classes split into two strong isotopy classes,
while others do not. Geometric? Algebraic? Doesn’t matter. A test for
when it happens would be great.
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Is isotopic shifting the key?

There is a promising recent idea. . .

An isotopic shift of a polynomial f is a polynomial F satisfying

F (X ) = f (X + L(X ))− f (X )− f (L(X )),

where L is a linearised polynomial.

These were recently used to construct new APN functions, and have been
shown to be able to jump equivalence classes for planar functions.

My Ph.D. student, Emily Bergman, and I are hoping to find a way of
predicting if and when an isotopic shift switches strong isotopy classes
within the same isotopy class.

I have another direction in mind also. . . but it needs some explaining!
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Off on a geometric tangent

An incidence structure is nothing more than a set of points V and a set L
of non-empty subsets of V called lines. We’ll deal exclusively with the
finite setting here.

Definition
An incidence structure P is a projective plane if

Every two points lie on a unique line.

Every two lines intersect at a unique point or not at all.

There are at least 4 points, no three of which are collinear.

These axioms force P to have the same number of points on every line and
the same number of lines through every point.
We define the order of P to be n, where n + 1 is this forced number.

To obtain an affine plane from a projective plane, delete any line and all
the points on it.
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The classical example

Choose a field Fq. To construct the Desarguesian plane of order q, we first
proceed to construct an affine plane. . .

The points are the elements of Fq × Fq, the lines are the symbols [m, k]
and [m], with m, k ∈ Fq, defined by

[m, k] = {(x ,mx + k) : x ∈ Fq} (the lines of slope m),

[m] = {(m, y) : y ∈ Fq} (the vertical lines).

To complete the projective plane, we add one point (m) to each line of
slope m, and (∞) to each of the vertical lines.
Finally, we create the line [∞] consisting of all of these added points.

Note how the field operations are effectively equivalent to the plane – they
define the non-vertical lines.
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Hall’s coordinatisation method

We’ve understood since at least early in the 20th century, that the field
can be replaced with certain other algebraic structures, such as a semifield,
and the construction will still produce a projective plane.

However, it wasn’t until Hall introduced the coordinatisation method (in
the 1940s) that algebraic techniques could be used to study arbitrary
planes.
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The coordinatisation method – the labelling set

Let P be a projective plane of order n. To introduce a coordinate system
on P we proceed as follows.

First, select any set R of cardinality n – this set and the symbol ∞ will be
all that is required to produce the coordinate system on P .

We designate two special elements of R by 0 and 1 for reasons which will
become clear.
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The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1) J = (1)
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The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1) J = (1)

Choose any triangle ∆ in the plane.
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The initial setup

O x = (0)

y = (∞)

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1) J = (1)

Label O = (0, 0), x = (0) and y = (∞).

Robert Coulter (UD) Planar fns and commutative sfds June 2019 33 / 41



The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1) J = (1)

This determines the “line at infinity” x y = [∞].
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The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]

I = (1, 1) J = (1)

Set [0] = O y (the vertical line) and [0, 0] = O x.

Robert Coulter (UD) Planar fns and commutative sfds June 2019 33 / 41



The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1)

I = (1, 1) J = (1)

Select a fourth point I = (1, 1) to create the initial quadrangle.

Robert Coulter (UD) Planar fns and commutative sfds June 2019 33 / 41



The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1)

(0, 1)

J = (1)

Set x I ∩ [0] = (0, 1).
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The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1)

(0, 1)

(1, 0)

J = (1)

Set y I ∩ [0, 0] = (1, 0).
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The initial setup

O x = (0)

y = (∞) [∞]

[0, 0]

[0]
I = (1, 1)

(0, 1)

(1, 0)

J = (1)

Set (1, 0)(0, 1) ∩ [∞] = J = (1).
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Point labelling

O x = (0)

y = (∞)

(0, 1)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

There are n − 2 points remaining on [0] that are unlabelled.
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Point labelling

O x = (0)

y = (∞)

(0, a)

(0, b)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Arbitrarily label them as (0, a), (0, b), etc, a, b ∈ R \ {0, 1}.
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Point labelling

O x = (0)

y = (∞)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Labelling the points of [∞]:
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Point labelling

O x = (0)

y = (∞)

(1, 0)

(0, a)

(a)

(0, b)

(a, 0)

(a, b)

Labelling the points of [∞]: set (0, a)(1, 0) ∩ [∞] = (a).
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Point labelling

O x = (0)

y = (∞)

J = (1)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Labelling the points of [0, 0]:

Robert Coulter (UD) Planar fns and commutative sfds June 2019 34 / 41



Point labelling

O x = (0)

y = (∞)

J = (1)

(1, 0)

(0, a)

(a, 0)

(0, b)

(a, 0)

(a, b)

Labelling the points of [0, 0]: set (0, a) J ∩ [0, 0] = (a, 0).
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Point labelling

O x = (0)

y = (∞)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Labelling the “affine” points:
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Point labelling

O x = (0)

y = (∞)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Labelling the “affine” points: set (a, 0) y ∩ (0, b) x = (a, b).
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Point labelling

O x = (0)

y = (∞)

(1, 0)

(0, a)

(0, b)

(a, 0)

(a, b)

Labelling the “affine” points: set (a, 0) y ∩ (0, b) x = (a, b).
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Line labelling

O x = (0)

y = (∞) [∞]

[0, 0]

[0]

It remains only to complete the labelling of lines.
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Line labelling

O x = (0)

y = (∞)

(a, 0)

Labelling the “vertical” lines:
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Line labelling

O x = (0)

y = (∞)

(a, 0)

[a]

Labelling the “vertical” lines: set (a, 0) y = [a].
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Line labelling

O x = (0)

y = (∞)

(0, k)

(m)

Labelling the “lines of slope m”:
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Line labelling

O x = (0)

y = (∞)

(0, k)

(m)

[m, k]

Labelling the “lines of slope m”: set (m)(0, k) = [m, k].
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Coordinatisation complete. . .

With all points and lines of the plane P now labelled, the task that
remains is to produce an algebraic system equivalent to P that allows
meaningful study.
This is achieved via the construction of a trivariate function on R.

A planar ternary ring (PTR) T is a trivariate function T : R3 → R
obtained from a coordinatised plane P via the defining rule

T (m, x , y) = k if and only if (x , y) ∈ [m, k].

It cannot be over emphasised that any one P can yield many different
PTRs through choosing different quadrangles O x y I, or even through
choosing a different labelling of the line [0].
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Hall’s Equivalence of PTRs and projective planes

Theorem (Hall, 1943)
Let P be a projective plane of n and R be any set of cardinality n. Let
T : R3 → R be a PTR obtained from coordinatising P . Then T must
satisfy 5 specific properties (details irrelevant for this talk).

Conversely, any tri-variate function T defined on R which satisfies those 5
properties can be used to define an affine plane AT of order n as follows:

the points of A are (x , y), with x , y ∈ R;

the lines of A are the symbols [m, k], with m, k ∈ R, defined by

[m, k] = {(x , y) ∈ R×R : k = T (m, x , y)},

and the symbols [a], with a ∈ R, defined by

[a] = {(a, y) : y ∈ Fq}.

Note how the PTR is used to define the non-vertical lines.
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Binary operations from the PTR

The addition and multiplication come from the PTR: specifically

x ⊕ y = T (1, x , y),

x � y = T (x , y , 0),

for all x , y ∈ R.

From Hall’s result you can show that both ⊕ and � form loops with
identities 0 and 1 over R and R∗, respectively.

A little while ago, I realised that you can actually determine how the
operations act on the plane.
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The action of ⊕ on the vertical line

O x = (0)

y = (∞)

J = (1)

(0, a)

(0, b)

(a, 0)

(a, b)

The action is anchored on the triangle ∆ O x y and point J = (1).
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The action of ⊕ on the vertical line

O x = (0)

y = (∞)

J = (1)

(0, a)

(0, b)

(a, 0)

(a, b)

Choose two points (0, a), (0, b) on O y = [0]. What is (0, a⊕ b)?
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The action of ⊕ on the vertical line

O x = (0)

y = (∞)

J = (1)

(0, a)

(0, b)

(a, 0)

(a, b)

Create the point (a, 0) = (0, a) J ∩O x.
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The action of ⊕ on the vertical line

O x = (0)

y = (∞)

J = (1)

(0, a)

(0, b)

(a, 0)

(a, b)

Now create the point (a, b) = (a, 0) y) ∩ (0, b) x.
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The action of ⊕ on the vertical line

O x = (0)

y = (∞)

J = (1)

(0, a)

(0, b)

(a, 0)

(a, b)

(0, k)

Now (0, k) = J(a, b) ∩O y = (0, a⊕ b).
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Why care?

There are a lot of semifield planes known through computation (mostly by
Eric Moorhouse).

All of these have the same additive structure as a finite field, so you can
label the vertical line so that the addition IS the field addition.

The resulting multiplication must be a semifield multiplication, and so you
can derive planar DOs from it.

This hasn’t been done before.

Thus, we can find more planar DOs that represent previously anonymous
commutative semifield planes.

And this construction covers the full isotopy class, whether it splits into
two strong isotopy classes or not.

That’s my newest Ph.D. student’s research project.

So we might have to
wait a few years.
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Thanks for your time.
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