
Research Directions on the Complexity of
Boolean Circuits for Codes and Cryptography

Lúıs Brandão, Çağdaş Çalık, Morris Dworkin,
Nathan Dykas, René Peralta, Meltem Sönmez Turan

National Institute of Standards and Technology (Gaithersburg MD, USA)

Presentation at BFA 2019
Boolean Functions and their Applications (BFA)

June 17, 2019 @ Florence, Italy



Outline

1. Introduction

2. Reed-Solomon code

3. Symmetric Boolean functions

4. Binary polynomial multiplication

2/22



1. Introduction

Outline

1. Introduction

2. Reed-Solomon code

3. Symmetric Boolean functions

4. Binary polynomial multiplication

3/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Circuit Complexity

We are interested in several measures of circuit complexity:

I Multiplicative complexity (MC)

I SMPC, ZKPs, side-channel protections (threshold)

I Additive complexity (AC)

I Codes, matrix multiplication

I Time, energy, area

I Actual implementation on a chip

Optimization with respect to any of these metrics is
computationally intractable ... we do what we can.

4/22



1. Introduction

Three topics in this talk:

I Reed-Solomon Codes

→ AC

I Symmetric Boolean functions

→ MC

I Recursive relations for binary multiplication

→ MC and AC

5/22



1. Introduction

Three topics in this talk:

I Reed-Solomon Codes → AC

I Symmetric Boolean functions → MC

I Recursive relations for binary multiplication → MC and AC

5/22



2. Reed-Solomon code

Outline

1. Introduction

2. Reed-Solomon code

3. Symmetric Boolean functions

4. Binary polynomial multiplication

6/22



2. Reed-Solomon code

Reed-Solomon codes

RS(255,223) takes 223 message bytes (m0, . . . ,m222) and computes
32 check bytes B0, . . . , B31 (these are initialized at 0).

message
bytes

B0 B1 B30 B31

g0 g1 g30 g31

message
bytes

B0 B1 B30 B31

g0 g1 g30 g31

M

I Multiplication by a constant gi ∈ GF (28) is a linear operation.

I Each gi can be viewed as an 8 by 8 binary matrix. (See M as a
256x8 matrix.)

7/22



2. Reed-Solomon code

Reed-Solomon codes

RS(255,223) takes 223 message bytes (m0, . . . ,m222) and computes
32 check bytes B0, . . . , B31 (these are initialized at 0).

message
bytes

B0 B1 B30 B31

g0 g1 g30 g31

message
bytes

B0 B1 B30 B31

g0 g1 g30 g31

M

I Multiplication by a constant gi ∈ GF (28) is a linear operation.

I Each gi can be viewed as an 8 by 8 binary matrix. (See M as a
256x8 matrix.)

7/22



2. Reed-Solomon code

Heuristics For Linear Circuit Minimization

I In crypto, it seems that everybody uses an algorithm due to
Paar.

I In earlier work we showed that Paar’s algorithm can do quite
poorly.

I We have published two algorithms:
I An exponential-time algorithm which we can use for systems of

dimension up to about 20.
I An efficient randomized heuristic which we use for larger

systems.

8/22



2. Reed-Solomon code

Achieved improvement

I Paar (1997) “reduced” the number of XORs for multiplication
by M to about 24 gates per finite field multiplication. This
yields a circuit with about 760 XORs for multiplication by M .

I We constructed a circuit to do this using only 159 gates and
depth 3.

I In this case, our solution is basically optimal. But we have
encountered linear maps for which our best methods do
a lousy job of minimization.

9/22



2. Reed-Solomon code

Achieved improvement

I Paar (1997) “reduced” the number of XORs for multiplication
by M to about 24 gates per finite field multiplication. This
yields a circuit with about 760 XORs for multiplication by M .

I We constructed a circuit to do this using only 159 gates and
depth 3.

I In this case, our solution is basically optimal. But we have
encountered linear maps for which our best methods do
a lousy job of minimization.

9/22



2. Reed-Solomon code

Achieved improvement

I Paar (1997) “reduced” the number of XORs for multiplication
by M to about 24 gates per finite field multiplication. This
yields a circuit with about 760 XORs for multiplication by M .

I We constructed a circuit to do this using only 159 gates and
depth 3.

I In this case, our solution is basically optimal. But we have
encountered linear maps for which our best methods do
a lousy job of minimization.

9/22



3. Symmetric Boolean functions

Outline

1. Introduction

2. Reed-Solomon code

3. Symmetric Boolean functions

4. Binary polynomial multiplication

10/22



3. Symmetric Boolean functions

Symmetric Boolean Functions

A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric, if
the output depends only on the Hamming weight of the input.

I Several useful sub-classes: elementary symmetric (Σn
i );

exactly-counting (En
i ); threshold (Tn

i ).

This work: Find MC-efficient circuits for symmetric Boolean
functions.

11/22



3. Symmetric Boolean functions

Hamming weight method

Since Muller and Preparata :

I A symmetric function is a sum of elementary symmetric functions Σn
i ;

I Σn
i decomposes into a product of Σn

2j ;

I If H = yk . . . y0 is the binary representation of the integer sum
x1 + . . .+ xn, then yi = Σn

2i(x1, . . . , xn).

So start by computing H.

The exact multiplicative complexity of H is known.

12/22



3. Symmetric Boolean functions

Hamming weight method

Since Muller and Preparata :

I A symmetric function is a sum of elementary symmetric functions Σn
i ;

I Σn
i decomposes into a product of Σn

2j ;

I If H = yk . . . y0 is the binary representation of the integer sum
x1 + . . .+ xn, then yi = Σn

2i(x1, . . . , xn).

So start by computing H.

The exact multiplicative complexity of H is known.

12/22



3. Symmetric Boolean functions

Hamming weight method

Since Muller and Preparata :

I A symmetric function is a sum of elementary symmetric functions Σn
i ;

I Σn
i decomposes into a product of Σn

2j ;

I If H = yk . . . y0 is the binary representation of the integer sum
x1 + . . .+ xn, then yi = Σn

2i(x1, . . . , xn).

So start by computing H.

The exact multiplicative complexity of H is known.

12/22



3. Symmetric Boolean functions

A generalization

I Think of the input x0 . . . xn−1 as n wires of weight 1;

I More generally, consider inputs whose weights are powers of 2;

I If three wires w0, w1, w2 have weight 2i you can replace these wires
with

I 1 wire u = (w0 + w1)(w0 + w2) + w0 of weight 2i+1 ; and
I one wire v = (w0 + w1 + w2) of weight 2i .

u and v are just the outputs of a full adder. The multiplicative cost
of this operation is 1 AND gate.

For symmetric functions, this reduces the arity of the function
to be computed by 1.

13/22



3. Symmetric Boolean functions

A generalization

I Think of the input x0 . . . xn−1 as n wires of weight 1;

I More generally, consider inputs whose weights are powers of 2;

I If three wires w0, w1, w2 have weight 2i you can replace these wires
with

I 1 wire u = (w0 + w1)(w0 + w2) + w0 of weight 2i+1 ; and
I one wire v = (w0 + w1 + w2) of weight 2i .

u and v are just the outputs of a full adder. The multiplicative cost
of this operation is 1 AND gate.

For symmetric functions, this reduces the arity of the function
to be computed by 1.

13/22



3. Symmetric Boolean functions

A generalization

I Think of the input x0 . . . xn−1 as n wires of weight 1;

I More generally, consider inputs whose weights are powers of 2;

I If three wires w0, w1, w2 have weight 2i you can replace these wires
with

I 1 wire u = (w0 + w1)(w0 + w2) + w0 of weight 2i+1 ; and
I one wire v = (w0 + w1 + w2) of weight 2i .

u and v are just the outputs of a full adder. The multiplicative cost
of this operation is 1 AND gate.

For symmetric functions, this reduces the arity of the function
to be computed by 1.

13/22



3. Symmetric Boolean functions

Example : E4
8

Example: find MC-optimal circuit for the exactly-counting E8
4 (outputs 1

iff the input has four 1’s) — posed as open problem in 2008 [BP08].

I 4 applications of the full adder operation reduces the problem from 8
wires of weight 1 to 4 wires (y3, y2, y1, y0) of weights 4,2,1,1
respectively.

I The function E4
8 is 1 iff (y3, y2, y1, y0) ∈ {(1, 0, 0, 0), (0, 1, 1, 1)};

I Equivalently, E4
8 = (y3 + y0)(y3 + y1)(y3 + y2);

I Thus C∧(E4
8) ≤ 4 + 2 = 6;

I It was known already that C∧(E4
8) ≥ 6. So this fully solves the

problem.

14/22



3. Symmetric Boolean functions

Example : E4
8

Example: find MC-optimal circuit for the exactly-counting E8
4 (outputs 1

iff the input has four 1’s) — posed as open problem in 2008 [BP08].

I 4 applications of the full adder operation reduces the problem from 8
wires of weight 1 to 4 wires (y3, y2, y1, y0) of weights 4,2,1,1
respectively.

I The function E4
8 is 1 iff (y3, y2, y1, y0) ∈ {(1, 0, 0, 0), (0, 1, 1, 1)};

I Equivalently, E4
8 = (y3 + y0)(y3 + y1)(y3 + y2);

I Thus C∧(E4
8) ≤ 4 + 2 = 6;

I It was known already that C∧(E4
8) ≥ 6. So this fully solves the

problem.

14/22



3. Symmetric Boolean functions

Example : E4
8

Example: find MC-optimal circuit for the exactly-counting E8
4 (outputs 1

iff the input has four 1’s) — posed as open problem in 2008 [BP08].

I 4 applications of the full adder operation reduces the problem from 8
wires of weight 1 to 4 wires (y3, y2, y1, y0) of weights 4,2,1,1
respectively.

I The function E4
8 is 1 iff (y3, y2, y1, y0) ∈ {(1, 0, 0, 0), (0, 1, 1, 1)};

I Equivalently, E4
8 = (y3 + y0)(y3 + y1)(y3 + y2);

I Thus C∧(E4
8) ≤ 4 + 2 = 6;

I It was known already that C∧(E4
8) ≥ 6. So this fully solves the

problem.

14/22



3. Symmetric Boolean functions

Example : E4
8

Example: find MC-optimal circuit for the exactly-counting E8
4 (outputs 1

iff the input has four 1’s) — posed as open problem in 2008 [BP08].

I 4 applications of the full adder operation reduces the problem from 8
wires of weight 1 to 4 wires (y3, y2, y1, y0) of weights 4,2,1,1
respectively.

I The function E4
8 is 1 iff (y3, y2, y1, y0) ∈ {(1, 0, 0, 0), (0, 1, 1, 1)};

I Equivalently, E4
8 = (y3 + y0)(y3 + y1)(y3 + y2);

I Thus C∧(E4
8) ≤ 4 + 2 = 6;

I It was known already that C∧(E4
8) ≥ 6. So this fully solves the

problem.

14/22



3. Symmetric Boolean functions

Example : E4
8

Example: find MC-optimal circuit for the exactly-counting E8
4 (outputs 1

iff the input has four 1’s) — posed as open problem in 2008 [BP08].

I 4 applications of the full adder operation reduces the problem from 8
wires of weight 1 to 4 wires (y3, y2, y1, y0) of weights 4,2,1,1
respectively.

I The function E4
8 is 1 iff (y3, y2, y1, y0) ∈ {(1, 0, 0, 0), (0, 1, 1, 1)};

I Equivalently, E4
8 = (y3 + y0)(y3 + y1)(y3 + y2);

I Thus C∧(E4
8) ≤ 4 + 2 = 6;

I It was known already that C∧(E4
8) ≥ 6. So this fully solves the

problem.

14/22



3. Symmetric Boolean functions

Results

I For functions of up to 6 variables, we have constructed
MC-optimal circuits;

I So, if a sequence of full adder operations decrease the number
of variables of a target symmetric function to 6 or less, we can
construct a pretty good circuit (is it optimal?);

I We generated circuits for all symm. functions with up to 25
vars;

I We believe these circuits are optimal for symmetric functions of
21 or fewer variables.

15/22



3. Symmetric Boolean functions

Results

I For functions of up to 6 variables, we have constructed
MC-optimal circuits;

I So, if a sequence of full adder operations decrease the number
of variables of a target symmetric function to 6 or less, we can
construct a pretty good circuit (is it optimal?);

I We generated circuits for all symm. functions with up to 25
vars;

I We believe these circuits are optimal for symmetric functions of
21 or fewer variables.

15/22



3. Symmetric Boolean functions

Results

I For functions of up to 6 variables, we have constructed
MC-optimal circuits;

I So, if a sequence of full adder operations decrease the number
of variables of a target symmetric function to 6 or less, we can
construct a pretty good circuit (is it optimal?);

I We generated circuits for all symm. functions with up to 25
vars;

I We believe these circuits are optimal for symmetric functions of
21 or fewer variables.

15/22



3. Symmetric Boolean functions

Results

I For functions of up to 6 variables, we have constructed
MC-optimal circuits;

I So, if a sequence of full adder operations decrease the number
of variables of a target symmetric function to 6 or less, we can
construct a pretty good circuit (is it optimal?);

I We generated circuits for all symm. functions with up to 25
vars;

I We believe these circuits are optimal for symmetric functions of
21 or fewer variables.

15/22



4. Binary polynomial multiplication

Outline

1. Introduction

2. Reed-Solomon code

3. Symmetric Boolean functions

4. Binary polynomial multiplication

16/22



4. Binary polynomial multiplication

Searching for best Karatsuba recurrences

Example: multiplication of two binary polynomials of degree 10

(A0 +A1x
5) · (B0 +B1x

5) = C0 + C1x
5 + C2x

10

A0, A1, B0, B1 are polynomials of degree 5.

17/22



4. Binary polynomial multiplication

Karatsuba recurrences

For multiplication of two n-term binary polynomials P and Q.

Let M(n) be the gate complexity (over ∧ and ⊕).
A k−way Karatsuba recurrence arises from splitting the polynomials
into k pieces. Recurrences are of the form

M(n) ≤ αM(n/k) + βn+ γ.

1. α is the multiplicative complexity of multiplying two binary
polynomials of degree k.

2. β and γ depend on the additive complexity of certain linear
maps generated in the previous step. (FP 2018)

18/22



4. Binary polynomial multiplication

Karatsuba recurrences

For multiplication of two n-term binary polynomials P and Q.

Let M(n) be the gate complexity (over ∧ and ⊕).
A k−way Karatsuba recurrence arises from splitting the polynomials
into k pieces. Recurrences are of the form

M(n) ≤ αM(n/k) + βn+ γ.

1. α is the multiplicative complexity of multiplying two binary
polynomials of degree k.

2. β and γ depend on the additive complexity of certain linear
maps generated in the previous step. (FP 2018)

18/22



4. Binary polynomial multiplication

Methodology

Problem is to multiply two binary polynomials
A = a0 + a1X + . . . an−1X

n−1 , B = b0 + b1X + . . . bn−1X
n−1.

Targets: the product coefficients tk =
∑

i+j=k aibj .

The MC problem is to find a minimum-size set of generators of
multiplicative complexity 1 which span the set of targets.

Symmetric Bilinear Generators: for S ⊂ {0, . . . , n− 1}, the
symmetric bilinear forms GS =

(∑
i∈S ai

)(∑
i∈S bi

)
.

Conjecture: For all n, there exists an optimal solution consisting
solely of symmetric bilinear generators.

19/22



4. Binary polynomial multiplication

Methodology

Problem is to multiply two binary polynomials
A = a0 + a1X + . . . an−1X

n−1 , B = b0 + b1X + . . . bn−1X
n−1.

Targets: the product coefficients tk =
∑

i+j=k aibj .

The MC problem is to find a minimum-size set of generators of
multiplicative complexity 1 which span the set of targets.

Symmetric Bilinear Generators: for S ⊂ {0, . . . , n− 1}, the
symmetric bilinear forms GS =

(∑
i∈S ai

)(∑
i∈S bi

)
.

Conjecture: For all n, there exists an optimal solution consisting
solely of symmetric bilinear generators.

19/22



4. Binary polynomial multiplication

Methodology

Problem is to multiply two binary polynomials
A = a0 + a1X + . . . an−1X

n−1 , B = b0 + b1X + . . . bn−1X
n−1.

Targets: the product coefficients tk =
∑

i+j=k aibj .

The MC problem is to find a minimum-size set of generators of
multiplicative complexity 1 which span the set of targets.

Symmetric Bilinear Generators: for S ⊂ {0, . . . , n− 1}, the
symmetric bilinear forms GS =

(∑
i∈S ai

)(∑
i∈S bi

)
.

Conjecture: For all n, there exists an optimal solution consisting
solely of symmetric bilinear generators.

19/22



4. Binary polynomial multiplication

Methodology

1. Find solutions with minimal sets of generators:

1.1 Limit search to subspaces that are expansions of the targets.
1.2 Determine whether candidate subspaces have a basis of

generators.

2. Reduce # of XOR gates: For each solution found in the
previous step (there may be thousands of them), minimize the
linear parts of the resulting circuit.

20/22



4. Binary polynomial multiplication

New results

M(6n) ≤ 17M(n) + 83n− 26

M(7n) ≤ 22M(n) + 106n− 31

M(8n) ≤ 26M(n) + 147n− 40.

These result from exhaustive search of bilinear bases in the case of
n = 6 and 7.

In the case of n = 8 we have not been able to traverse the full
space. So we used some divine inspiration to restrict the space.

This yields smallest known circuits for binary polynomial
multiplication for many values of n.

Will post circuits for multiplication of polynomials up to 100 or so.

21/22



4. Binary polynomial multiplication

New results

M(6n) ≤ 17M(n) + 83n− 26

M(7n) ≤ 22M(n) + 106n− 31

M(8n) ≤ 26M(n) + 147n− 40.

These result from exhaustive search of bilinear bases in the case of
n = 6 and 7.

In the case of n = 8 we have not been able to traverse the full
space. So we used some divine inspiration to restrict the space.

This yields smallest known circuits for binary polynomial
multiplication for many values of n.

Will post circuits for multiplication of polynomials up to 100 or so.

21/22



4. Binary polynomial multiplication

New results

M(6n) ≤ 17M(n) + 83n− 26

M(7n) ≤ 22M(n) + 106n− 31

M(8n) ≤ 26M(n) + 147n− 40.

These result from exhaustive search of bilinear bases in the case of
n = 6 and 7.

In the case of n = 8 we have not been able to traverse the full
space. So we used some divine inspiration to restrict the space.

This yields smallest known circuits for binary polynomial
multiplication for many values of n.

Will post circuits for multiplication of polynomials up to 100 or so.

21/22



4. Binary polynomial multiplication

Thank you for your attention

I Project email: circuit complexity@nist.gov

I Circuit Complexity project at NIST: https://csrc.nist.gov/Projects/Circuit-Complexity

I GitHub webpage: https://github.com/usnistgov/Circuits/

Presentation at the Boolean Functions and their Applications (BFA)

June 17, 2019 @ Florence, Italy

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or as views of the U.S.
Department of Commerce. The identification of any commercial product or trade names in this presentation does not imply endorsement of
recommendation by NIST, nor is it intended to imply that the material or equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting
licensed and/or fair use.

22/22

https://csrc.nist.gov/Projects/Circuit-Complexity
https://github.com/usnistgov/Circuits/

	Title
	Outline
	1 Introduction
	Outline
	Circuit Complexity

	2 Reed-Solomon code
	Outline
	Reed-Solomon codes
	Heuristics For Linear Circuit Minimization
	Achieved improvement

	3 Symmetric Boolean functions
	Outline
	Symmetric Boolean Functions
	Hamming weight method
	 A generalization 
	 Example : E48 
	Results

	4 Binary polynomial multiplication
	Outline
	Searching for best Karatsuba recurrences
	Karatsuba recurrences
	Methodology
	Methodology
	New results
	Thank you for your attention



