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A-Mapping

Let p be a prime and [F,» a field of degree n. Let f be a mapping
f o Fpn — Fpn.
» For c € Fyn we define Ay (2) := f(x +¢) — f(z).
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The (differential) uniformity of f is
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A-Mapping

Let p be a prime and [F,» a field of degree n. Let f be a mapping
f o Fpn — Fpn

>
>

| 2

l

For ¢ € Fyn we define Ay (2) := f(x +¢) — f(x).

Ny(c, a) is defined as #Af (a) for a,c € Fpn, i.e.
the number of solutions of f(z +¢) — f(x) —a = 0.

The family (Nf(c-a))cae]F -
) p

The (differential) uniformity of f is
Us == max{N¢(c,a)|a,c € Fyn,c # 0}.
A mapping f is called (differentially) k-uniform if Uy = k.

is called the difference spectrum.

If fis a power mapping ¢ we write Ny(c, a), Age(z),...

If £ =1, then f is called perfect nonlinear (PN) or planar.
If & = 2, then f is called almost perfect nonlinear (APN).

4/39



Equivalence Relations

HOEHSEHULE
EMDEN - LEER

5/39



Equivalence Relations preserving the Difference Properties

The seminal equivalence relation which preserves the difference
spectrum (Ny(c, a))cacF,n 1S

Carlet-Charpin-Zinoviev equivalence - CCZ-equivalence

Two functions f, h from [F,» to itself are called CCZ-equivalent if
for some affine permutation £ of Ff,n

L(I'y) =T}, where

Iy ={(z, f(z))|x € Fpn} and 'y, = {(z, h(x))|x € Fpn }.

]
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Equivalence Relations preserving the Difference Properties

The seminal equivalence relation which preserves the difference
spectrum (Ny(c, a))cacF,n 1S

Carlet-Charpin-Zinoviev equivalence - CCZ-equivalence

Two functions f, h from [F,» to itself are called CCZ-equivalent if
for some affine permutation £ of FZQ,R

L(I'y) =T}, where

Iy ={(z, f(z))|x € Fpn} and 'y, = {(z, h(x))|x € Fpn }.

» Differentially k-uniform mappings are classified according to
CCZ-equivalence.

» Helleseth, Rong and Sandberg conducted extensive computer
search in the 90th to classify k-uniform power mappings.
These numerical results are well-known as the H-R-S tables.
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For power mappings we have the following results

U. Dempwolff

Let F,» be a finite field of characteristic p and x* and 2! be power
functions on Fyn. Then z* and 2! are CCZ-equivalent, if and only if
there exists a positive integer 0 < m < n, such that

[ =p™k mod (p" — 1) or kl = p™ mod (p" — 1).

IZ"Note, that the latter condition means that 27" "% and z! are
inverse to each other.

» For power mappins z¢ the difference spectrum is completely
determined by the difference spectrum (Ny(1, a))acF,n-

» 2¢is CCZ-equivalent to (z — %)d over Fn, p odd.

Thus we will consider Ag 1 (m - %) because this is often more
convenient.
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Mappings over Fields of odd Characteristic in Cryptography
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[F3» matters in Cryptography
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https://cryptobriefing.com/iota-new-hash-function/
https://cryptobriefing.com/iota-new-hash-function/

[F3» matters in Cryptography

» The proprietary hash function Curl employed in the
cryptocurrency IOTA makes use of ternary S-boxes and is
vulnerable to differential cryptanalysis.
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The proprietary hash function Curl employed in the
cryptocurrency IOTA makes use of ternary S-boxes and is
vulnerable to differential cryptanalysis.

The IOTA foundation substituted it by the new ternary hash
function Troika in collaboration with Cybercrypt (Bogdanov et
al.) and initiated a crypto challenge over 200.000 €.

The foundation is currently developing new computer chips
built around base-3 logic (https:
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In this context research on bijective power mappings with low
uniformity over F3n is of particular interest as they can be also
employed in S-boxes for SPN- and streamciphers.
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[F3» matters in Cryptography

>

The proprietary hash function Curl employed in the
cryptocurrency IOTA makes use of ternary S-boxes and is
vulnerable to differential cryptanalysis.

The IOTA foundation substituted it by the new ternary hash
function Troika in collaboration with Cybercrypt (Bogdanov et
al.) and initiated a crypto challenge over 200.000 €.

The foundation is currently developing new computer chips
built around base-3 logic (https:
//cryptobriefing.com/iota-new-hash-function/).

In this context research on bijective power mappings with low

uniformity over F3n is of particular interest as they can be also
employed in S-boxes for SPN- and streamciphers.

Planar functions cannot be bijective. Thus mappings of
uniformity > 2 are of interest (see also AES).

B’ As p = 3 is of interest other primes will follow(?).
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We contribute to this development and prove

Theorem 1: Bijective Power Mapping over F3., n odd with

Low Uniformity

1. The family 2% d!, = ¥4 3“2 — 1 over Fyn,n odd is
bijective.
2. The inverse is z%, where

n+1
372 +1

,m =3 mod 4
n+1l
Fol 43 24l n =1mod 4.

3. Itis Uy, =Ug =4 forn > 1.

Ty =

]

EMDEN LEER
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This explains the following entries in the H-R-S tables

l

dis min {d-3*mod (3" — 1)[0 <i <n—1}.
The first two entries are new and result from z

The last two entries are explained by z% which was discovered

by Felke in 2006.

‘ p" ‘ d ‘ uniformity ‘
3° | 49 4
37 | 301 4
3° 5 4
37 41 4

d

U
n
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This explains the following entries in the H-R-S tables

v

l

‘ p" ‘ d ‘ uniformity ‘

3° | 49 4
37 | 301 4
3° 5 4
37| 41 4

dis min {d-3*mod (3" — 1)[0 <i <n—1}.

The first two entries are new and result from z¢

U
n

The last two entries are explained by z% which was discovered
by Felke in 2006.

Theorem 1 can be proven by the multivariate method which
will be shown later.

It is enough to compute the uniformity for one of these
families, e.g. by the result of Dempwolff.
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Let 2%, d, = B~ _1 +p " 4{lbea power function from Fpn
Fpn, p an odd pr|me and n odd. Then

1. Uy, <3,p=1mod4,
2. Uy, =3, p=3,n=1,
3. Uy, €{2,4,6} else.

» Theorem 2 is a generalization of the power mapping
x4 d, = 5” L 455 +1,n odd with 2;, = 3 (Felke 2006).

» The bound in 1 is still tight if we exclude p =5 as it is e.g.
assumed over [Fq3.

» The set in 3 cannot be narrowed in this general setting and
theorem 2 covers some open entries in the H-R-S tables (next

table).

l
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p ‘ n ‘ d ‘ uniformity ‘ H-R-S entry ‘
711 5 4 no H-R-S table
713 179 4 | open H-R-S entry
715 8453 6 no H-R-S table
77412115 6 no H-R-S table
1111 7 2 no H-R-S table
1113 677 4 | open H-R-S entry
11 | 5| 80647 6 no H-R-S table

» Again d is min {d-p’ mod (p" —1)|0 <i<n—1}.

7
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7

‘ p ‘ n ‘ d ‘ uniformity ‘ H-R-S entry ‘
711 5 4 no H-R-S table
713 179 4 | open H-R-S entry
715 8453 6 no H-R-S table
77412115 6 no H-R-S table

1111 7 2 no H-R-S table
1113 677 4 | open H-R-S entry
11 | 5| 80647 6 no H-R-S table

Again d is min {d - p’ mod (p” — 1)|0 <i <n —1}.
No known family shares the difference properties given in the

theorem. Therefore this family is new and not CCZ-equivalent
to known ones.

Theorem 2 can be proven as well by the above mentioned
multivariate method.
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The Multivariate Method
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The Multivariate Method (Dobbertin, Felke)

Problem: Many proofs dealing with k-uniform mappings make use
of a , rabbit out of the hat".

» The multivariate method aims to give systematic approach to
compute the uniformity of certain families of mappings over
Fpn.

IS"The uniformity deals with the formal derivative. In analogy
to calculus standard techniques to study the derivative for

certain families of power mappings and to compute the
uniformity are developed.
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The Multivariate Method (Dobbertin, Felke)

Problem: Many proofs dealing with k-uniform mappings make use
of a , rabbit out of the hat".

>

l

The multivariate method aims to give systematic approach to
compute the uniformity of certain families of mappings over
Fpn.

IS"The uniformity deals with the formal derivative. In analogy
to calculus standard techniques to study the derivative for
certain families of power mappings and to compute the
uniformity are developed.

The proofs presented here give such standard techniques when
a certain resultant can be resolved by certain radicals and
linearized polynomials.

These techniques are applicable to many families with low

n+1
+1

uniformity found in the past, e.g. 2> ,n odd (inverse of a
already proven conjecture by Dobbertin et al.)
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From now on we consider F,» with n odd.

l
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Theorem and Definition

n+1
2

» The conjugation P is denoted by x*. It is z** = zP.

l

16 /39



From now on we consider F,» with n odd.

Theorem and Definition

n+1
2

is denoted by x*. It is z** = zP.
p"—1

» The quadratic character x — 2,z € F);n is denoted by
Xpn(z). We skip p, when it is clear.

» The conjugation P

l

16 /39



From now on we consider F,» with n odd.

Theorem and Definition

n+1
2

» The conjugation P is denoted by x*. It is z** = zP.

p—1

» The quadratic character x — 2,z € F);n is denoted by
Xpn(z). We skip p, when it is clear.

> Itis xpm(a) =1iff a =72 r € Fhn.
> Itis xpn(—1) = 1iff 252 is even.
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From now on we consider F,» with n odd.

Theorem and Definition

n+1
2

is denoted by x*. It is z** = zP.

p—1

» The quadratic character x — 2,z € F);n is denoted by
Xpn(z). We skip p, when it is clear.

> Itis xpm(a) =1iff a =72 r € Fhn.
> Itis xpn(—1) = 1iff 252 is even.
> Asnis odd it is x,,(—1) = 1 iff p=1 mod 4.
> For o € Fyn we define /o := 7 € F 1, where a = r2 and
Fpn C Fpn/ is smallest field extension containing 7.
If p=3mod4 and r € Fpn we set /o := r, where r is s.t.
x(r) =1.
This way the root becomes unique.

» The conjugation P
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From now on we consider F,» with n odd.

Theorem and Definition

n+1
2

» The conjugation P is denoted by x*. It is z** = zP.

p—1

» The quadratic character x — 2,z € F);n is denoted by
Xpn(z). We skip p, when it is clear.

> Itis xpm(a) =1iff a =72 r € Fhn.
> Itis xpn(—1) = 1iff 252 is even.
» Asnisodd itis xp,(—1) = 1iff p=1 mod 4.
> For a € Fyn we define o :=1r € IFpn/, where o = 2 and
Fpn C Fpn/ is smallest field extension containing 7.
If p=3mod4 and r € Fpn we set /o := r, where r is s.t.
x(r) =1.
This way the root becomes unique.
> Itis Vao* = VaPa* = X(a%)a%m € Fpn for
p = 3 mod 4.

l
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We will now prove

Theorem 1: Bijective Power Mapping over F3., n odd with

Low Uniformity

1. The family 2% d!, = ¥4 3“2 — 1 over Fyn,n odd is
bijective.
2. The inverse is z%, where

n+1
372 +1

,m =3 mod 4
" n+1l
Fol 43 24l n =1mod 4.

3. Itis Uy, =Ug =4 forn > 1.

Ty =

We start to prove U, = 4 with the multivariate method.

]

EMDEN LEER
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Step 1:Transform Ay (z — 1) = a into a System of
Multivariate Equations

> Sety:=x" = :cgnT+1 then
2 = xn(2),/72.

> The equation Ay, (z — 3) = a has the multivariate
representation:

Xn(x =1/ (y =Dz —1) = xalz+ Dy + 1) (= +1) =

and itis Ay, (x —1) = Ay, (—x —1).
> \We get by successive squaring and conjugation with * the

system
Fy:2? — (a® + Dy + o2 +a —-a? =0
Fo:y?— 0+ Dy + a0+ -2 = 0.

l

18 /39



Step 2: Compute the Resultant and Factorize it

This gives
¢1(z)

ba(
o3
Pal

l

T
X
T

~— — —

22 +abr+a®+b% -1
22 —abr+a®+b* -1
ot + (ab— 1)2% + a® + ab + b?

x* — (ab+ 1)2? + a® — ab + b2
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Step 3: Determine the symbolic Roots and finally the

Solutions of Ay (z — 3) = a

The polynomials split over Fpn/,n’ = n or 2n as listed below
¢1(z) = (2 —ab— /(a2 = 1)(b2 = 1)) (z —ab+ /(a2 — 1)(b2 — 1)
¢2(z) = (2 +ab+ /(a2 = 1)(B2 = 1)) (2 +ab— /(a2 — 1)(b2 — 1)

¢3(z) = <!E—\/ab—1—|—\/(a2—1)(b2—1)>
Pa(z) = <$—\/—ab—1+\/(a2—1)(b2—1)>

]
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Step 3: Determine the symbolic Roots and finally the

Solutions of Ay (z — 3) = a

The polynomials split over Fpn/,n’ = n or 2n as listed below

1 (z) = Ex —ab— /(@ —1)(% — 1)3 Ex —ab+ /(@@= D)2 — 1)3

$2(x) = (2 +ab++/(a> = 1)(0? = 1)) (2 +ab—/(a® = 1)(0? - 1)
¢3(z) = <$—\/ab—1—|—\/(a2—1)(b2—1)>
pa(z) = (w—\/—ab—l—i—\/(aQ—l)(bQ—l))

» The next step is to determine which of these roots yield

solutions of Ay, (z — 1) = a.

IS Step 3 is crucial. In analogy to treating derivatives in
calculus we will show that this step yields to a standard
technique by using . ..

l
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Rational Parameterizations

» The elements x, (o) = £1, xn(a—1) =+l,a,a — 1 € Fi,
can be parameterized by rational parameterizations.
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Rational Parameterizations

» The elements x, (o) = £1, xn(a—1) =+l,a,a — 1 € Fi,
can be parameterized by rational parameterizations.

» E.g. since n is odd we have x,,(—1) = —1 and the elements
Xn(@) = xn(a—1) =1 can be parametrized by
a=(u+2)? ueFs\{0,£1}.

The parameterization maps 4-to-1 and isin 1 to 1
correspondence with the cyclotomic numbers.
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Rational Parameterizations

» The elements x, (o) = £1, xn(a—1) =+l,a,a — 1 € Fi,
can be parameterized by rational parameterizations.

» E.g. since n is odd we have x,,(—1) = —1 and the elements
Xn(@) = xn(a—1) =1 can be parametrized by
a=(u+2)? ueFs\{0,£1}.

The parameterization maps 4-to-1 and isin 1 to 1
correspondence with the cyclotomic numbers.

and

Weil estimate (quadratic case over 3. )

Let f(x) € Fsn[z] be a quadratic polynomial with 2 distinct zeros
in its splitting field then it is ‘Zangn Xn(f(a))‘ <1

N
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Exemplary we treat the zeros of ¢1, o
> The radicals in ¢y, ¢o are of the form /(a2 — 1)(b2 — 1) and
it is ¢1(—$) = ¢2(1‘)
» Since our mapping is of the form x(z),/yz it is
Ag, (—z) = Ag, (z).
» Obviously the conjugation

V@ =D = 1) = xal@ - D@ - )y/@ = DF - 1)

plays a crucial role.

» This leads to the case distinction x,(a? — 1) = £1 and it is
sufficient to consider ¢;.

l

22/39



Case 1: xn(a®? —1) =1,a ¢ F3
Then a can be paramterized by v + 1 and Ay, (z — 1) =a
becomes equal to

Yale = DYy - D@ —1) - xale+ D/ + D@+ D) =u+ L.

l
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Case 1: xn(a®? —1) =1,a ¢ F3
Then a can be paramterized by v + 1 and Ay, (z — 1) =a
becomes equal to

Xn(z =1/ (y—D(@—1) = xalz+1)y/y+1)(z+1) =u+ L.
» With the above substitution
p1(z) = (z+ %+ %)(x + uu* +
Fg(u, u*) C Fjn.

1
uu*

) splits over

l
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Case 1: xn(a®? —1) =1,a ¢ F3
Then a can be paramterized by v + 1 and Ay, (z — 1) =a
becomes equal to

Xz =1/ (y = D@ —1) = xule+ D/ + D@ +1) =u+ .
» With the above substitution
p1(z) = (z+ % +%)(x+uu+ L) splits over
Fg(u, u*) C Fjn.
» These zeros are plugged into
Ag,(z—1)=u+1
giving rational expresssions in R(u,u*) depending on x,(u),
e.g. for xn(u) = —1 we get
% *__ .3
(=1 Dy —1) = =i
Xn(@+ 1)/ @+ D(y+1) = Lhon)

l
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Case 1: xn(a®? —1) =1,a ¢ F3
Then a can be paramterized by v + 1 and Ay, (z — 1) =a
becomes equal to
Xn(@—1)/(y—1D@—-1)—xn(z+1)/(y+1)(z+1) =u+ 1.
» With the above substitution
o1(z) = (45 + 4
Fg(u, u*) C Fjn.

1 .
—=) splits over

» These zeros are plugged into
Ag,(z—1)=u+1
giving rational expresssions in R(u,u*) depending on x,(u),
e.g. for xn(u) = —1 we get

Xnlz =D/ @ -y —1) = L=
(e + Dy T Dy +1) = CRou),

We skip the remaining technical but S|mp|e details here.
» Analogously we treat the case x,(a? —1) = 1.
This yields the following proposition.

N
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» Ay(x —1) =a,a ¢ Fs3 has exactly two solutions from ¢1, ¢
iff xn(a? — 1) =1 and x,(u) = —1, where u is such that
a=u+ .

Such u exists for n > 3 and in this case the solutions are given
by -+ (uu” + 1)

» In all other cases it has no solutions from ¢, and ¢s.

» The polynomials ¢3, ¢4 are treated in the same way by
successively applying again the rational parametrizations for
elements of the form (o) = £1, xp(a — 1) = £1,a € F3n.

> We get

l
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Given a & F3o, then ¢3 and ¢4 contribute solutions only if
Xn(a? —1) = —1 (in opposite to proposition 1).

> ltis #A;ﬂl(a) = 4 iff a can be parameterized by

_ (e hsol) ey xn(s? —s—1) = —1.

(s2—s—1)2

» In all other cases ¢3, ¢4 contribute no solutions.

» From the Weil estimate we get that such an a or s exists
respectively .

» The exceptional cases I3, F33,F39 can be inspected easily , by
hand".

» Combining this with proposition 1 yields 2% is 4-uniform for
Fsn,n > 1.

l
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To complete the proof of theorem 1 we have to show that
3n _ ntl

pldn — a3 dn

Sketch of Proof.

n=3mod4:

n+1
e ) +1
/ <s22+1> (%%”2 71)
gdndn = g

_ ()

= X

—1is the inverse of z

l
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Proof of Theorem 2

Recall

Let 2%, d, = 7% -I-]DnT+1 + 1 be a power function from Fp» to
Fyn, p an odd prime and n odd. Then

1. Uy, =3,p=3,n=1,
2. Ug, = 3,p=1mod 4,
3. Uy, €{2,4,6} else.

]
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Step 1: Describe Ay, (z — 1) = a as a System of
Multivariate Equations

It is 2% = v, (z)yx, where =a*, o = 2P,
X yzx, Yy

Thus by setting b = a* ,
Frixn (243) (54 3) (24 3) =xn (v —3) (v = 3) (= -
Frixn(z+g)(y+g) (@ +3) —xa(z—3)(y—3) (2”

l
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Case distinction according to the values of y,, gives:
Case l: x(z —3) =1L x(z+3)=1

Fii : z4+y—a = 0
Fio @ 2P4+y—b = 0
Case 2: x(z — 3) = -1, x(z+3) =1
Fy xy—%a%—i =

Fyy a;py — %b + i =
Case 3: x(z — 3) =1, x(z +
F51 : xy+ %a + % =
Fyp @ aPy+ib+1 =
Case 4: x(x — %) =—1,x

F41 D r+yt+a = 0

Fio : aP+y+b = 0.
The above case distinction does not capture the 2 cases a = %1.
IS Simple exception handling.

+ oo~ o © +
N—
I
|
o

—~~
8
N[
N~—
Il
|
—_

l

29 /39



Step 2: Compute the Resultants and Factorize it

This gives the following resultants:
Case 1: x(z — 3) =L x(z+ 1) =
p1(v) =2 —x+a—b
Case 2: x(z —3) = -1, x(z + 1) =1

_1
¢2() x(xpl—bﬁ)

2

Case 3: x(z — %)_1 X(w‘_{_%):_l

Case 4: X( ) -1 X(JU—F =1
¢a(x) —a:p—:v—a—i—b

]
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Step 2: Compute the symbolic Roots and finally the

Solutions of Ay (z — 3) = a

px)=rx—a)(r—a—-1)...(r—a—-—p—1)
da(z)=(rz+)(z+a+l)...(z+a+p—1)
over Fpn by the famous Hilbert 90.

l
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Step 2: Compute the symbolic Roots and finally the

Solutions of Ay (z — 3) = a

px)=rx—a)(r—a—-1)...(r—a—-—p—1)
da(z)=(rz+)(z+a+l)...(z+a+p—1)
over Fpn by the famous Hilbert 90.
It is pnTH — 1 always divisible by p — 1 and therefore

P2(x) =

n+1 n+1

T2 —1 T2 —1
x(m—wo(a—é)p p=1 )...(m—wp2(a—é)p p=1 ) and
¢3(z) =

ntl n41

0 i) L i)

rlz—-wl(a+sz) »1 oo lz—wP 2 (a+3) T |,weT,
a p — 1-th root of unity.
IE"Step 3 yields again in analogy to calculus standard techniques to

treat the radicals and the linear polynomials ¢1, ¢2 occuring in
many situation when applying this method.

N
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The Contribution of ¢1, ¢4

> Itis <Z>1(ac) =0 iff ¢4(—.%') =0.

> ltis x(—z — 3) = x(—-1)x(z + 1) and
x(—=z + 3) = x(=Dx(z - 3).
> If p=3mod 4 then a zero a + G;, B; € F,, of ¢; yields a
solution of equation Fy; iff — (oo + j3;) extends to a solution of
equation Fj;.
» If p =1 mod 4 then either ¢ or ¢4 contribute a solution.

]
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> ¢, contributes at most 1 suitable solution. Assume the
contrary. Then oo+ f8; + " + 37 =0
and
a+Bj+a*+ B =0,8 €F,.

» Subtracting both equations gives 5; — 3; + (8; — ;)" = 0.
As Bz — Bj S Fp it is (/Bz — ,B])* = (/Bz - /B])
Consequently 3; — 3; + (8; — ;)" = 2(8; — B;) = 0. It follows
Bi = Bj.

Thus ¢1 and ¢4 contribute either 0 or 1 solution when p =1 mod 4
and 0 or 2 solutions when p = 3 mod 4 to Fi.

l
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The contribution of ¢ and ¢3

> It is zy = 22 over F,, and therefore plugging
} ) P _
w'(a—35) 71 into zy gives
m—1

. D
w2l(a—%)1+ =1 0<i<p-—2.

> |t follows that the possible solutions of F5; are
ntl

_pt=1

. 3 .
tw' (a — %)pz’fl where w?n» = L(a—1)" »1 €F,.
Such an i, exists iff x,, (3 (e —3)) =1,a # 1.

In the same vein ¢3 is treated. We skip the details.

l
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> Remember that y(—z — 1) = x(—1)x(z + 3) and
X(=z +3) = x(-1)x(z - 3).

» This gives that ¢ and ¢3 contribute either 0 or 1 solution
each when p =1 mod 4 and 0 or 2 solutions each when
p =3 mod 4 to F.

» In total they contribute either at a most 2 or 4 solutions

respectively.

Exception handling by using gives the corresponding theorem. The
results are summed up in the following tables.

l
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p=1mod4

] | x(z—3) | x(z+ %) | No. of solutions

Case 1 1 1| 0orl

Case 2 -1 1| 0orl

Case 3 1 -1 [0orl

Case 4 1 1| 0orl(1sol ifcasel
has 0 sol.
and vice versa

Exceptions a = £1 1/0 0/1| <3

Exceptions a = ﬁ:% <3

l
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p =3 mod 4

] | x(z—3) | x(z+ %) | No. of solutions

Case 1 1 1| 0orl

Case 2 -1 1| 0or2

Case 3 1 -1 |{0or2

Case 4 1 1] 0orl(1sol iffcasel

has 1 sol.)
Exceptions a = *1 1/0 0/1 ] <5
Exceptions a = :i:% 0/1 1/0| <6

l
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p =3 mod 4

] | x(z—3) | x(z+ %) | No. of solutions

Case 1 1 1| 0orl

Case 2 -1 1| 0or2

Case 3 1 -1 |{0or2

Case 4 1 1] 0orl(1sol iffcasel

has 1 sol.)
Exceptions a = *1 1/0 0/1 ] <5
Exceptions a = :i:% 0/1 1/0| <6

From this theorem 2 follows.

Uy, = 3 for p=3,n =1 is computed directly.

l
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Conclusion & Open Problems

HOEHSEHULE
EMDEN - LEER

38/39



Conclusion & Open Problems

HOCHSEHULE
EMDEN - LEER

39/39



Conclusion & Open Problems

>

l

We introduced two families of power mappings of low
uniformity in theorem 1 and 2. The family in theorem 1 is
bijective over F3 and therefore of particular interest as a
building block for cryptography over odd characteristic
(Cryptocurrency IOTA).

I5"Compute the crosscorrelation for this family.
IS"Cryptanalysis based on quadratic characters.
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In analogy to calculus we gave standard techniques for the
multivariate method, where the corresponding resultants can
be resolved by certain radicals and linearized polynomials. This
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Conclusion & Open Problems

» We introduced two families of power mappings of low
uniformity in theorem 1 and 2. The family in theorem 1 is
bijective over F3 and therefore of particular interest as a
building block for cryptography over odd characteristic
(Cryptocurrency IOTA).

I5"Compute the crosscorrelation for this family.
IS"Cryptanalysis based on quadratic characters.

» In analogy to calculus we gave standard techniques for the
multivariate method, where the corresponding resultants can
be resolved by certain radicals and linearized polynomials. This
simplifies and unifies the proofs for many families (in opposite
to ,rabbit out of the hat“).

» Improve the bound of theorem 2 for concrete primes p, e.g. it
is conjectured that Uy, = 4 for d,, = ?’712;1 + 3% +1,n> 3.
I2"Could be doable with the multivariate method presented
here as a basis.

" Work in progress and joint work is welcome. 3939
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