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Some Notations & Definitions |

F2n is the finite field with 2n elements, often identified with
the vector space of tuples Fn

2

Boolean functions: f : F2n → F2

Bn = the set of all Boolean functions on n variables.
The Walsh–Hadamard transform of f ∈ Bn is

Wf (u) =
∑

x∈F2n

(−1)f (x)+Trn
1(u·x),

Trn
1 : F2n → F2 is the absolute trace function, given by

Trn
1(x) =

∑n−1
i=0 x2i

.

Wf satisfies Parseval’s relation
∑

a∈F2n

Wf (a)2 = 22n.



Some Notations & Definitions |I

F : Fn
2 → Fm

2 is a vectorial Boolean, or (n,m)-function;
When m = n, F can be uniquely represented as a
univariate polynomial F (x) =

∑2n−1
i=0 aix i , ai ∈ F2n (using

the natural identification of F2n with Fn
2);

Walsh transformWF (a,b) is the Walsh-Hadamard
transform of its component fcts. Trm

1 (bF (x)) at a, i.e.,

WF (a,b) =
∑

x∈F2n

(−1)Trm
1 (bF (x))+Trn

1(ax),a ∈ F2n ,b ∈ F2m .

F is called an almost perfect nonlinear (APN) function if
#{x ∈ F2n : F (x + a) + F (x) = b} ≤ 2.



Characterizations of the APN property: F be an
(n,n)-function

(i)
∑

a,b∈F2n

W4
F (a,b) ≥ 23n+1(3 · 2n−1 − 1); “ =′′ iff F is APN;

(ii) if F is APN & F (0) = 0, then∑
a,b∈F2n

W3
F (a,b) = 22n+1(3 · 2n−1 − 1);

(iii) (Rodier Condition) F is APN if and only if all the points
x , y , z satisfying F (x) + F (y) + F (z) + F (x + y + z) = 0,
belong to the surface (x + y)(x + z)(y + z) = 0.



Partial APN functions

Definition

Let x0 ∈ F2n . We call an (n,n)-function F a (partial) x0-APN
function (pAPN) if all u, v with
F (x0) + F (u) + F (v) + F (x0 + u + v) = 0 are on the curve
(x0 + u)(x0 + v)(u + v) = 0.

Our proposal for the partial APN concept comes from a
study of the conjecture of Budaghyan, Carlet, Helleseth, Li,
Sun, which claims that for n ≥ 3 an APN function modified
at a point cannot remain APN.



Connection to the partial APN property?

F ′(x) =

{
F (x) if x 6= x0

y1 if x = x0.

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

If F is APN and its (x0, y1)-modification F ′ with y1 6= F (x0) is
x0-APN, then F ′ is APN.

In light of this, the conjecture of Budaghyan et al. can be
strengthened:

Conjecture (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

An (x0, y1)-modification of an APN function with y1 6= F (x0) is
not x0-APN.



Partial APN – necessary and sufficient condition

In case you wonder... or not

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let F be an (n,n)-function and x0 ∈ F2n . Then F is x0-APN iff∑
a,b∈F2n

W3
F (a,b)(−1)Trn

1(ax0+bF (x0)) = 22n+1(3 · 2n−1 − 1).



Code associated to a pAPN function I

There is a connection between a partial APN function and
the code associated to it;
[Carlet-Charpin-Zionviev ’98] Let F (x) =

∑2n−1
j=0 γjx j on

F2n , F (0) = 0, and CF be the [2n − 1, k ,d ] linear code
generated by the matrix

CF =

(
1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

)
,

(with entries viewed in the vector space Fn
2).

Codewords of CF : Tr(a x) + Tr(b F (x)), a,b ∈ F2n ;



Code associated to a pAPN function II

The minimum distance of CF is 3 ≤ d ≤ 5;
Further:

1 d = 5 if and only if F is APN;
2 d = 4 iff there exist distinct nonzero x , y , z,w s.t.

x + y + z + w = 0 & F (x) + F (y) + F (z) + F (w) = 0;
3 d = 3 iff there exist distinct x , y , z s.t. x + y + z = 0 &

F (x) + F (y) + F (z) = 0;
Thus, if F with F (0) = 0 is x0-APN, but not APN, then CF
has distance either 3, or 4;

1 E.g., F (x) = x3 + Tr5
1(x

7) is 0,1-APN on F25 ; Cf has d = 4;
2 E.g., F (x) = x3 + x127 on F26 is x0-APN for for 64 values on

F27 ; Cf has d = 3;



The pAPN spectrum (size) is a CCZ invariant

Theorem (Budaghyan-Kalyesky-Riera-S. ’19)

The size of the pAPN spectrum is preserved under the CCZ
equivalence. More precisely, if A is the CCZ isomorphism, and
denoting the respective pAPN spectra of F ,G by SF ,SG, then, if
x0 ∈ SF , and (x̃0,G(x̃0)) = A(x0,F (x0)), we have that x̃0 ∈ SG.



Monomial partial APN functions

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let F2n be the extension field of F2 corresponding to the
primitive polynomial f of degree n and let ζ be one of the
(primitive) roots of f . Then (with

(a
b

)
2 :≡

(a
b

)
(mod 2)):

(i) Let F (x) = xm over F2n . Then F is APN if and only if F is
0-APN and x1-APN for some x1 ∈ F∗2n .

(ii) if F (x) = xm over F2n , then F is 0-APN if and only if for
1 ≤ i ≤ 2n − 1, the minimal polynomial of ζ i ,∏

j∈Ci
(X − ζ j) 6 |,

∑mi−1
k=1

(mi
k

)
2 X mi−k−1, where Ci = {(i · 2j)

(mod 2n − 1) : j = 0,1, . . .} is the unique cyclotomic coset
of i modulo 2n − 1;



General Gold, Kasami, Niho, Bracken-Leander, etc. I

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

(,) Let F (x) = x2d−1 over F2n , where gcd(d − 1,n) = 1, then F
is 0-APN;

(3) F (x) = x` with ` = 3 · 2k are the only power functions
which are 0-APN over any extension of F2. All other power
functions are 0-APN over infinitely many extensions of F2.
They are also not 0-APN over infinitely many dimensions.

(5) Let f1(x) = x2t+1 be the Gold function on F2n (APN when
gcd(t ,n) = 1). Then f1 is not x0-APN for any x0 ∈ F2n , if
gcd(n, t) = d > 1.



General Gold, Kasami, Niho, Bracken-Leander, etc. II

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

(17) Let f2(x) = x2r−2t+1, r > s (gen. Kasami). Then, f2 is
0-APN iff gcd(t ,n) = gcd(r − t ,n) = 1. Moreover, if
d = gcd(t , r − t ,n) > 1, then f2 is not ζk -APN, where ζ is a
(2n − 1)-primitive root of unity, and k ≡ 0 (mod 2n−1

2d−1).

(257) Let f3(x) = x2r+2t−1, r > t , be the generalization of the
Niho function x → x22t+2t−1 over F2n (known to be APN for
n = 2r + 1, 2t = r , or n = 2t + 1, 2r = 3t + 1). Then f3 is
0-APN iff gcd(r ,n) = gcd(t ,n) = 1. (For t = 2, this includes
f (x) = x2r+3, the Welch function; known to be APN for
n = 2r + 1).



General Gold, Kasami, Niho, Bracken-Leander, etc. III

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

(65537) Let f4(x) = x22t+2t+1 (gen. Bracken-Leander) over F22n . If t
is odd, then f4 is not 0-APN. If n = 2t and t is even, then f
is 0-APN.

(4294967297) Let f5(x) = x2n−2s
. Then, f5 is 0-APN if and only if

gcd(n, s + 1) = 1. In particular, for s = 1, f5(x) = x−1 is the
inverse function (extended to F2n by setting 0−1 = 0) which
is known to be APN for n odd.

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

Let F (x) = x2n−1 + x2n−2 be on F2n . Then F is 1-APN, but not
0-APN, for all n ≥ 3. Further, F is differentially 4-uniform.
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Non pAPN (hence non APN) functions I

In a series of papers (2009–), Rodier et al. found several
classes of functions that are never APN for infinitely many
extensions of F2. We continued this work and extended some
of Rodier’s classes.

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let L be a linear poly on F2n , g primitive in F2n and d ≥ 1.
Let F (x) = L

(
x2d+1

)
+ Trn

1(x
3),G(x) =

L
(

x2d+1+2d+1
)
+ Trn

1(x
3). If gcd(d ,n) > 1, then neither F

nor G is 0-APN.
Let L1,L2 be linear on F2n . If gcd(d , r ,n) > 1, then
L1(x2d+1) + L2(x2r+1) is not 0-APN. Further
x2d+1 + Trn

1(x
2r+1) is not 0-APN if gcd(d ,n) > 1 and

gcd(2r + 1,2n − 1) = 1, or gcd(d , r ,n) > 1. If
gcd(d , s,n) > 1, then L1

(
x2d+1+2d+1

)
+ L2

(
x2s+1+2s+1

)
is

not 0-APN.



Non pAPN (hence non APN) functions II

Theorem (Leander-Rodier, 2011)

If n ≥ 2 and d is a nonzero integer which is not a power of 2,
then the function

F (x) = x2n−2 + β xd

over F2n is not APN for d ≤ 29 and any β ∈ F∗2n .

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let a > b be positive integers. Assuming that one of xa and xb

are 0-APN on F2n and gcd(a− b,2n − 1) = 1, the polynomial
xa + β xb is not 0-APN for any β ∈ F∗2n .



pAPN and Dillon polynomial I

Dillon suggested investigating functions of the form (n
even)

F (x) = x(Ax2+Bxq+Cx2q)+x2(Dxq+Ex2q)+Gx3q,q = 2n/2,

as candidates for APN or differentially 4-uniform functions.
We took q = 2k and q = 2k + 1, for arbitrary k , and
investigated the pAPN property.
Below we give a sample (for q = 2k + 1, since if q = 2k

they are all quadratic and the proofs are simpler).



pAPN and Dillon polynomial II

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2019)

Let 1 ≤ k ≤ n − 1. The following statements hold:
(1) F1(x) = Ax3 + Cx2k+1+3 (respectively,

F2(x) = Ax3 + Cx2k+3) is not 0-APN.

(2) The functions F3(x) = Ax3 + Gx2k+1+2k+3 is not 0-APN if n
is odd; if n is even, then F3 is 0-APN if and only if( A

G

)2−k

/∈ F∗22 .

(3) Under gcd(2k + 1,2n − 1) = 1, which happens if n is odd,
or n ≡ 2 (mod 4) and k is even, then
F4(x) = Bx2k+2 + Cx2k+1+3 is not 0-APN.

(5) F5(x) = Bx2k+2 + Dx2k+3 is never 0-APN.



pAPN and Dillon polynomial III

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2019)

(8) Under gcd(2k+1 + 1,2n − 1) = 1 (which happens if n is
odd, or n ≡ 2 (mod 4) and k is odd), then
F6(x) = Bx2k+2 + Gx2k+1+2k+2+1 is not 0-APN.

(13) F7(x) = Cx2k+1+3 + Dx2k+3, F8(x) = Cx2k+1+3 + Ex2k+1+4,
F9(x) = Cx2k+1+3 + Gx2k+1+2k+2+1,
F10(x) = Dx2k+3 + Gx2k+1+2k+2+1 are never 0-APN.

(21) Under gcd(2k + 1,2n − 1) = 1, which happens if n is odd,
or n ≡ 2 (mod 4) and k is even, then
F11(x) = Dx2k+3 + Ex2k+1+4 is not 0-APN.

(34) Under gcd(k ,n) = 1, F12(x) = Ex2k+1+4 +Gx2k+1+2k+2+1 is
not 0-APN.



Power functions F (x) = x i over F2n that are 0-APN, but
not APN

n Exponents i ∆F

1-5 - -
6 27 12

7 7,21,31,55 6
19,47 4

8

15,45 14
21,111 4

51 50
63 6

9
7, 21, 35, 61, 63, 83, 91, 111, 117, 119, 175 6

41, 187 8
45, 125 4

10

15, 27, 45, 75, 111, 117, 147, 189, 207, 255 6
21, 69, 87, 237, 375 4

231, 363, 495 42
105, 351 10

93 92
447 12
51 8

11

7, 11, 15, 21, 29, 31, 37, 47, 49, 51, 53, 55, 67, 71, 73, 75, 81, 83, 85, 99, 101

6

103, 111, 113, 121, 125, 127, 137, 139, 149, 153, 155, 157, 159, 167, 171, 173
179, 181, 185, 187, 189, 191, 201, 203, 205 ,213, 215, 217, 219, 221, 223, 229
247, 255, 293, 295, 301, 307, 309, 311, 317, 319, 331, 333, 335, 339, 341, 343
347, 351, 359, 371, 373, 375, 379, 381, 383, 423, 427, 443, 469, 471, 475, 477

479, 491, 493, 495, 507, 511, 687, 727, 731, 735, 751, 763, 767, 879, 887, 959, 991

19, 25, 27, 39, 41, 45, 61, 77, 87, 91, 105, 119, 123, 141, 147, 163, 165, 175 8199, 211, 233, 235, 237, 239, 349, 363, 415, 429, 431, 439, 501, 503, 699, 895

23, 69, 115, 207, 253, 299, 437, 759 22
79, 109, 183, 251, 367, 463, 695, 703 4

59, 93, 169, 243, 303, 509 10
89, 445 88

245, 447 16

12

27, 111, 153, 171, 279, 297, 423, 621, 747, 927, 1503, 1791 12
75, 243, 255, 285, 615, 885, 951, 1455 14

87, 213, 237, 339, 381, 591, 759 8
327, 363, 447, 489, 699, 957, 1371 6

63, 189, 441, 693 62
69, 201, 717, 831 10

45, 405, 495 44
819 818
315 314



Theorem (Pante Stanica: http://faculty.nps.edu/pstanica)

Thank you for your attention!

Proof.

None required, but questions are welcome!


