Boolean Functions and Applications (BFA) 2019, Florence, Italy; Honoring Prof. Claude Carlet

Partially APN Functions with APN-like Polynomial Representations

Pante Stanica (joint work with L. Budaghyan, N. Kaleyski, C. Riera)

Department of Applied Mathematics Naval Postgraduate School Monterey, CA 93943, USA; pstanica@nps.edu *Also associated to IMAR (Institute of Mathematics of the Romanian Academy)

Some Notations & Definitions |

- F_{2ⁿ} is the finite field with 2ⁿ elements, often identified with the vector space of tuples Fⁿ₂
- **Boolean functions:** $f : \mathbb{F}_{2^n} \to \mathbb{F}_2$
- B_n = the set of all Boolean functions on *n* variables.
- The Walsh–Hadamard transform of $f \in B_n$ is

$$\mathcal{W}_f(u) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \operatorname{Tr}_1^n(u \cdot x)},$$

 $\operatorname{Tr}_1^n : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is the absolute trace function, given by $\operatorname{Tr}_1^n(x) = \sum_{i=0}^{n-1} x^{2^i}$.

• W_f satisfies *Parseval's relation* $\sum_{a \in \mathbb{F}_{2n}} W_f(a)^2 = 2^{2n}$.

Some Notations & Definitions ||

- $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is a vectorial Boolean, or (n, m)-function;
- When *m* = *n*, *F* can be uniquely represented as a univariate polynomial *F*(*x*) = ∑_{i=0}^{2ⁿ-1} *a_ixⁱ*, *a_i* ∈ 𝔽_{2ⁿ} (using the natural identification of 𝔽_{2ⁿ} with 𝔽₂ⁿ);
- Walsh transform W_F(a, b) is the Walsh-Hadamard transform of its component fcts. Tr^m₁(bF(x)) at a, i.e.,

$$\mathcal{W}_{\mathsf{F}}(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}_1^m(b\mathsf{F}(x)) + \operatorname{Tr}_1^n(ax)}, a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_{2^m}$$

■ *F* is called an *almost perfect nonlinear* (*APN*) function if $\#\{x \in \mathbb{F}_{2^n} : F(x + a) + F(x) = b\} \le 2$.

Characterizations of the APN property: F be an (n, n)-function

(*i*)
$$\sum_{a,b\in\mathbb{F}_{2^n}} \mathcal{W}_F^4(a,b) \ge 2^{3n+1}(3\cdot 2^{n-1}-1); \ "=" \text{ iff } F \text{ is API}$$

(*ii*) if F is APN & F(0) = 0, then
 $\sum_{a,b\in\mathbb{F}_{2^n}} \mathcal{W}_F^3(a,b) = 2^{2n+1}(3\cdot 2^{n-1}-1);$

(*iii*) (Rodier Condition) *F* is APN if and only if all the points x, y, z satisfying F(x) + F(y) + F(z) + F(x + y + z) = 0, belong to the surface (x + y)(x + z)(y + z) = 0.

Definition

Let $x_0 \in \mathbb{F}_{2^n}$. We call an (n, n)-function F a (*partial*) x_0 -*APN* function (pAPN) if all u, v with $F(x_0) + F(u) + F(v) + F(x_0 + u + v) = 0$ are on the curve $(x_0 + u)(x_0 + v)(u + v) = 0$.

■ Our proposal for the partial APN concept comes from a study of the conjecture of Budaghyan, Carlet, Helleseth, Li, Sun, which claims that for n ≥ 3 an APN function modified at a point cannot remain APN.

Connection to the partial APN property?

$$F'(x) = \begin{cases} F(x) & \text{if } x \neq x_0 \\ y_1 & \text{if } x = x_0. \end{cases}$$

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

If F is APN and its (x_0, y_1) -modification F' with $y_1 \neq F(x_0)$ is x_0 -APN, then F' is APN.

In light of this, the conjecture of Budaghyan et al. can be strengthened:

Conjecture (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

An (x_0, y_1) -modification of an APN function with $y_1 \neq F(x_0)$ is not x_0 -APN.

In case you wonder... or not

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let F be an (n, n)-function and $x_0 \in \mathbb{F}_{2^n}$. Then F is x_0 -APN iff

$$\sum_{a,b\in\mathbb{F}_{2^n}}\mathcal{W}_F^3(a,b)(-1)^{\mathrm{Tr}_1^n(ax_0+bF(x_0))}=2^{2n+1}(3\cdot 2^{n-1}-1).$$

Code associated to a pAPN function I

- There is a connection between a partial APN function and the code associated to it;
- [Carlet-Charpin-Zionviev '98] Let $F(x) = \sum_{j=0}^{2^n-1} \gamma_j x^j$ on \mathbb{F}_{2^n} , F(0) = 0, and \mathcal{C}_F be the $[2^n 1, k, d]$ linear code generated by the matrix

$$C_F = \begin{pmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{2^n-2} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{2^n-2}) \end{pmatrix},$$

(with entries viewed in the vector space \mathbb{F}_2^n).

Codewords of C_F : Tr(ax) + Tr(bF(x)), $a, b \in \mathbb{F}_{2^n}$;

Code associated to a pAPN function II

- The minimum distance of C_F is 3 < d < 5; Further: 1 d = 5 if and only if F is APN; 2 d = 4 iff there exist *distinct* nonzero x, y, z, w s.t. x + y + z + w = 0 & F(x) + F(y) + F(z) + F(w) = 0;3 d = 3 iff there exist *distinct x*, *y*, *z* s.t. x + y + z = 0 & F(x) + F(y) + F(z) = 0;Thus, if F with F(0) = 0 is x_0 -APN, but not APN, then C_F has distance either 3, or 4; **1** E.g., $F(x) = x^3 + \text{Tr}_1^5(x^7)$ is 0, 1-APN on \mathbb{F}_{2^5} ; C_f has d = 4;
 - 2 E.g., $F(x) = x^3 + x^{127}$ on \mathbb{F}_{2^6} is x_0 -APN for for 64 values on \mathbb{F}_{2^7} ; C_f has d = 3;

The pAPN spectrum (size) is a CCZ invariant

Theorem (Budaghyan-Kalyesky-Riera-S. '19)

The size of the pAPN spectrum is preserved under the CCZ equivalence. More precisely, if A is the CCZ isomorphism, and denoting the respective pAPN spectra of F, G by S_F , S_G , then, if $x_0 \in S_F$, and $(\tilde{x}_0, G(\tilde{x}_0)) = A(x_0, F(x_0))$, we have that $\tilde{x}_0 \in S_G$.

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let \mathbb{F}_{2^n} be the extension field of \mathbb{F}_2 corresponding to the primitive polynomial f of degree n and let ζ be one of the (primitive) roots of f. Then (with $\binom{a}{b}_2 := \binom{a}{b} \pmod{2}$):

(*i*) Let $F(x) = x^m$ over \mathbb{F}_{2^n} . Then F is APN if and only if F is 0-APN and x_1 -APN for some $x_1 \in \mathbb{F}_{2^n}^*$.

(ii) if $F(x) = x^m$ over \mathbb{F}_{2^n} , then F is 0-APN if and only if for $1 \le i \le 2^n - 1$, the minimal polynomial of ζ^i , $\prod_{j \in C_i} (X - \zeta^j) \not|, \sum_{k=1}^{mi-1} {mi \choose k}_2 X^{mi-k-1}$, where $C_i = \{(i \cdot 2^j) (mod 2^n - 1) : j = 0, 1, ...\}$ is the unique cyclotomic coset of i modulo $2^n - 1$;

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

- (©) Let $F(x) = x^{2^d-1}$ over \mathbb{F}_{2^n} , where gcd(d-1, n) = 1, then F is 0-APN;
- (3) F(x) = x^ℓ with ℓ = 3 ⋅ 2^k are the only power functions which are 0-APN over any extension of F₂. All other power functions are 0-APN over infinitely many extensions of F₂. They are also not 0-APN over infinitely many dimensions.
 (5) Let f₁(x) = x^{2t+1} be the Gold function on F_{2ⁿ} (APN when gcd(t, n) = 1). Then f₁ is not x₀-APN for any x₀ ∈ F_{2ⁿ}, if gcd(n, t) = d > 1.

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

(17) Let
$$f_2(x) = x^{2^r-2^t+1}$$
, $r > s$ (gen. Kasami). Then, f_2 is
0-APN iff $gcd(t, n) = gcd(r - t, n) = 1$. Moreover, if
 $d = gcd(t, r - t, n) > 1$, then f_2 is not ζ^k -APN, where ζ is a
 $(2^n - 1)$ -primitive root of unity, and $k \equiv 0 \pmod{\frac{2^n - 1}{2^d - 1}}$.

(257) Let $f_3(x) = x^{2^r+2^t-1}$, r > t, be the generalization of the Niho function $x \to x^{2^{2t}+2^t-1}$ over \mathbb{F}_{2^n} (known to be APN for n = 2r + 1, 2t = r, or n = 2t + 1, 2r = 3t + 1). Then f_3 is 0-APN iff gcd(r, n) = gcd(t, n) = 1. (For t = 2, this includes $f(x) = x^{2^r+3}$, the Welch function; known to be APN for n = 2r + 1).

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

(65537) Let $f_4(x) = x^{2^{2t}+2^t+1}$ (gen. Bracken-Leander) over $\mathbb{F}_{2^{2n}}$. If t is odd, then f_4 is not 0-APN. If n = 2t and t is even, then f is 0-APN.

1967297) Let $f_5(x) = x^{2^n-2^s}$. Then, f_5 is 0-APN if and only if gcd(n, s + 1) = 1. In particular, for s = 1, $f_5(x) = x^{-1}$ is the inverse function (extended to \mathbb{F}_{2^n} by setting $0^{-1} = 0$) which is known to be APN for n odd.

Theorem (Budaghyan-Kaleyski-Riera-S. 2019)

Let $F(x) = x^{2^n-1} + x^{2^n-2}$ be on \mathbb{F}_{2^n} . Then F is 1-APN, but not 0-APN, for all $n \ge 3$. Further, F is differentially 4-uniform.

Non pAPN (hence non APN) functions I

In a series of papers (2009–), Rodier et al. found several classes of functions that are never APN for infinitely many extensions of \mathbb{F}_2 . We continued this work and extended some of Rodier's classes.

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

not 0-APN.

 Let L be a linear poly on F_{2ⁿ}, g primitive in F_{2ⁿ} and d ≥ 1. Let F(x) = L (x^{2^d+1}) + Tr₁ⁿ(x³),G(x) = L (x^{2^{d+1}+2^d+1}) + Tr₁ⁿ(x³). If gcd(d, n) > 1, then neither F nor G is 0-APN.
 Let L₁, L₂ be linear on F_{2ⁿ}. If gcd(d, r, n) > 1, then L₁(x^{2^d+1}) + L₂(x^{2^r+1}) is not 0-APN. Further x^{2^d+1} + Tr₁ⁿ(x^{2^r+1}) is not 0-APN if gcd(d, n) > 1 and gcd(2^r + 1, 2ⁿ - 1) = 1, or gcd(d, r, n) > 1. If gcd(d, s, n) > 1, then L₁ (x^{2^{d+1}+2^d+1}) + L₂ (x^{2^{s+1}+2^s+1}) is

Theorem (Leander-Rodier, 2011)

If $n \ge 2$ and d is a nonzero integer which is not a power of 2, then the function

$$F(x) = x^{2^n - 2} + \beta x^d$$

over \mathbb{F}_{2^n} is not APN for $d \leq 29$ and any $\beta \in \mathbb{F}_{2^n}^*$.

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2018)

Let a > b be positive integers. Assuming that one of x^a and x^b are 0-APN on \mathbb{F}_{2^n} and $gcd(a - b, 2^n - 1) = 1$, the polynomial $x^a + \beta x^b$ is not 0-APN for any $\beta \in \mathbb{F}_{2^n}^*$.

pAPN and Dillon polynomial I

Dillon suggested investigating functions of the form (n even)

$$F(x) = x(Ax^{2} + Bx^{q} + Cx^{2q}) + x^{2}(Dx^{q} + Ex^{2q}) + Gx^{3q}, q = 2^{n/2},$$

as candidates for APN or differentially 4-uniform functions.

- We took $q = 2^k$ and $q = 2^k + 1$, for arbitrary k, and investigated the pAPN property.
- Below we give a sample (for q = 2^k + 1, since if q = 2^k they are all quadratic and the proofs are simpler).

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2019)

Let $1 \le k \le n - 1$. The following statements hold: (1) $F_1(x) = Ax^3 + Cx^{2^{k+1}+3}$ (respectively, $F_2(x) = Ax^3 + Cx^{2^k+3}$) is not 0-APN.

- (2) The functions $F_3(x) = Ax^3 + Gx^{2^{k+1}+2^k+3}$ is not 0-APN if n is odd; if n is even, then F_3 is 0-APN if and only if $\left(\frac{A}{G}\right)^{2^{-k}} \notin \mathbb{F}_{2^2}^*$.
- (3) Under gcd(2^k + 1, 2ⁿ 1) = 1, which happens if n is odd, or n ≡ 2 (mod 4) and k is even, then F₄(x) = Bx^{2^k+2} + Cx^{2^{k+1}+3} is not 0-APN.
 (5) F₅(x) = Bx^{2^k+2} + Dx^{2^k+3} is never 0-APN.

pAPN and Dillon polynomial III

Theorem (Budaghyan-Kaleyski-Kwon-Riera-S. 2019)

Power functions $F(x) = x^i$ over \mathbb{F}_{2^n} that are 0-APN, but not APN

n	Exponents i	Δ_F
1-5		-
6	27	12
7	7,21,31,55	6
	19,47	4
8	15,45	14
	21,111	4
	51	50
	63	6
9	7, 21, 35, 61, 63, 83, 91, 111, 117, 119, 175	6
	41, 187	8
	45, 125	4
10	15, 27, 45, 75, 111, 117, 147, 189, 207, 255	6
	21, 69, 87, 237, 375	4
	231, 363, 495 105, 351	42
	93	10
	93 447	92 12
	447 51	8
<u> </u>	7. 11. 15. 21. 29. 31. 37. 47. 49. 51. 53. 55. 67. 71. 73. 75. 81. 83. 85. 99. 101	0
11	103, 111, 113, 121, 125, 127, 137, 139, 149, 153, 155, 157, 159, 167, 171, 173	11
	179, 181, 185, 187, 189, 191, 201, 203, 205, 213, 215, 217, 219, 221, 223, 229	0.7
	247, 255, 293, 295, 301, 307, 309, 311, 317, 319, 331, 333, 335, 339, 341, 343	6
	347, 351, 359, 371, 373, 375, 379, 381, 383, 423, 427, 443, 469, 471, 475, 477	Ŭ
	479, 491, 493, 495, 507, 511, 687, 727, 731, 735, 751, 763, 767, 879, 887, 959, 991	
	,,,,,,,,,,,,,,,,	
	19, 25, 27, 39, 41, 45, 61, 77, 87, 91, 105, 119, 123, 141, 147, 163, 165, 175	
	199, 211, 233, 235, 237, 239, 349, 363, 415, 429, 431, 439, 501, 503, 699, 895	8
		11
	23, 69, 115, 207, 253, 299, 437, 759	22
	79, 109, 183, 251, 367, 463, 695, 703	4
	59, 93, 169, 243, 303, 509	10
	89, 445	88
1	245, 447	16
12	27, 111, 153, 171, 279, 297, 423, 621, 747, 927, 1503, 1791	12
	75, 243, 255, 285, 615, 885, 951, 1455	14
	87, 213, 237, 339, 381, 591, 759	8
	327, 363, 447, 489, 699, 957, 1371	6
	63, 189, 441, 693	62
	69, 201, 717, 831	10
	45, 405, 495	44
	819	818
	315	314

Theorem (Pante Stanica: http://faculty.nps.edu/pstanica)

Thank you for your attention!

Proof.

None required, but questions are welcome!

