Links Between Plateaued Functions and Partial Geometric Difference Sets

Oktay Olmez

Department of Mathematics Ankara University

BFA 2019 (June 16-21, Florence, Italy)

- A k-subset D of an abelian group G is a (v, k, λ, n) difference sets (DS) if and only if every nonprincipal character χ satisfies |χ(D)| = √n.
- A k-subset R of an abelian group G is an (m, u, k, λ) semiregular relative difference set (RDS) if and only if (i) every nonprincipal character χ that is nonprincipal on U satisfies |χ(R)| = √k and (ii) every nonprincipal character χ that is principal on U satisfies |χ(R)| = 0.
- A k-subset S of an abelian group G is a partial geometric difference set in G with parameters (v, k; α, β) if and only if |χ(S)| = √β − α or χ(S) = 0 for every non-principal character χ of G.

Let G be a group of order v and let $S \subset G$ be a k-subset. For each $g \in G$, we define

$$\delta(g) := |\{(s,t) \in S \times S \colon g = st^{-1}\}|.$$

Let G be a group of order v. A k-subset S of G is called a partial geometric difference set (PGDS) in G with parameters $(v, k; \alpha, \beta)$ if there exist constants α and β such that, for each $x \in G$,

$$\sum_{y \in S} \delta(xy^{-1}) = \begin{cases} \alpha & \text{if } x \notin S, \\ \beta & \text{if } x \in S \end{cases}$$

If $D \subset G$ is a (v, k, λ) -DS, then D is a $(v, k; k\lambda, k + (k - 1)\lambda)$ -PGDS in G.

- ▶ Let s be an integer and C_m be the class of elements of Z^s₂ having exactly m ones as components.
- ▶ S := the set union of classes C_m with $m \equiv 2,3 \mod 4$.
- ▶ if s is odd then x(S) is either 0 or 2^{s-1/2} for any non-principal character. Olmez 2014
- ▶ If *s* is even *S* is a difference set. Menon 1960

$$f(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}. \text{ where } S = \cup C_m \text{ and } m \equiv 2 \text{ or } 3 \mod 4$$

 $f(x_0, x_1, x_2, x_3) = x_0x_1 + x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3 + x_2x_3$ Fourier spectra = $\{\pm 2^2\}$ Bent function: Fourier spectra = $\{\pm 2^{n/2}\}$ $f(x_0, x_1, x_2, x_3, x_4) = x_0x_1 + x_0x_2 + x_0x_3 + x_0x_4 + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$ Fourier spectra = $\{0, \pm 2^3\}$ **Plateaued function:** Fourier spectra = $\{0, \pm 2^t\}$ for some integer t

- (D1974) Having a (2^s, 2^{s-1} ± 2^{(s-2)/2}, 2^{s-2} ± 2^{(s-2)/2}) − DS in Z₂^s is equivalent to having a bent function from Z₂^s to Z₂.
 2 − (v, k, λ)-designs: NJ = rJ, JN = kJ and NN^t = (r − λ)I + λJ
- ▶ (O2015) The existence of a $(v = 2^s, k; \alpha, \beta) PGDS$ satisfying $\beta \alpha = 2^{2t-2}$ for some integer t and $k \in \{2^{s-1}, 2^{s-1} \pm 2^{t-1}\}$ is equivalent to the existence of a plateaued function f with Fourier spectrum of $\{0, \pm 2^t\}$ Partial geometric designs:
 - JN = kJ, NJ = rJ and $NN^tN = (\beta \alpha)N + \alpha J$

Another Example

- D := a Hadamard difference set in
- $S = (D,0) \bigcup (\mathbb{Z}_2^s \setminus D,1)$ a subset of \mathbb{Z}_2^{s+1}
- $\chi(S^2)$ is either 0 or 2^s for any non-principal character of \mathbb{Z}_2^{s+1} .
- ▶ For instance (16, 6, 2)-Hadamard difference set yields a partial geometric difference set with parameters (32, 16; 120, 136)

(1, 0, 0, 1, 0), (0, 1, 0, 1, 0), (1, 1, 0, 1, 0), (0, 0, 1, 1, 0),

(1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 0, 0, 1), (1, 0, 0, 0, 1),

 $(0,1,0,0,1),(0,0,1,0,1),(0,0,0,1,1),(1,1,1,1,1)\}$

 $f(x_0, x_1, x_2, x_3, x_4) = x_0x_1 + x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3 + x_2x_3 + x_4$

Combinatorial designs

Suppose *f* is a plateaued function with $Spec = \{0, \pm 2^t\}$ for some integer *t*. Define $F = (-1)^f$ and a matrix $M_f = (m_{x,y})$ where $m_{x,y} = F(x+y)$. Then,

$$(M_f^3)_{x,y} = ((F * F) * F)(x + y).$$

Let A = (F * F) * F. Then, the Fourier transform of A is $\widehat{A} = \widehat{F} \cdot \widehat{F} \cdot \widehat{F}$. Now by Fourier inversion

$$A(x+y)=2^{2t}F(x+y).$$

Hence the equation $M_f^3 = 2^{2t} M_f$ holds. Incidence matrix of PGD:

$$N=\frac{1}{2}(M_f+J)$$

$$\triangleright \ \zeta_p = e^{\frac{2i\pi}{p}}.$$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- A function from 𝑘_{pⁿ} to 𝑘_p is called a *p*-ary bent function if every Walsh coefficient has magnitude p^{n/2}.

$$R = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$$

is a (p^n, p, p^n, p^{n-1}) -relative difference set in $H = \mathbb{F}_{p^n} \times \mathbb{F}_p$

$$\triangleright \ \zeta_p = e^{\frac{2i\pi}{p}}.$$

- f := a function from the field \mathbb{F}_{p^n} to \mathbb{F}_p .
- A function from 𝔽_{pⁿ} to 𝔽_p is called a *p*-ary bent function if every Walsh coefficient has magnitude p^{n/2}.

$$R = \{(x, f(x)) : x \in \mathbb{F}_{p^n}\}$$

is a (p^n, p, p^n, p^{n-1}) -relative difference set in $H = \mathbb{F}_{p^n} \times \mathbb{F}_p$

Any non-principal character \(\chi\) of the additive group of \(\mathbb{F}_{p^n} \times \mathbb{F}_p\) satisfies \(|\chi(R)|^2 = p^n\) or 0. This observation reveals that the relative difference set \(R\) is indeed a partial geometric difference set.

weakly regular bent function:= if there exists some function

$$f^*: \mathbb{F}_{p^n} \mapsto \mathbb{F}_p$$

such that $W_f(x) = \nu p^{n/2} \zeta_p^{f^*(x)}$.

▶ Let f be a bent function from the field $\mathbb{F}_{3^{2s}}$ to \mathbb{F}_3 satisfying f(-x) = f(x) and f(0) = 0 and

$$D_i = \{x \in \mathbb{F}_{3^{2s}} : f(x) = i\}, i = 0, 1, 2$$

The sets $D_0 \setminus \{0\}$, D_1 and D_2 are all partial difference sets if and only if f is weakly regular. **Pot et. al. 2010**

▶ if f is weakly regular bent function from 𝔽_{3^{2s+1}} to 𝔽₃ then the sets D₀, D₁ and D₂ are all partial geometric difference sets. Olmez 2017

An example from planar functions

f(x) = Tr(γP(x)) from a planar function P and γ ≠ 0.(all mappings x → P(x + a) - P(x) are bijective for all a ≠ 0)
 Let s = 1 and f(x) = Tr(x²).

Sets	V	k	α	β
<i>D</i> ₀	27	9	24	33
D_1	27	6	6	15
D ₂	27	12	60	69
$D_1 \cup D_2$	27	18	210	219
$D_0 \cup D_1$	27	21	336	345
$D_0 \cup D_1$	27	15	120	129

- Let F be a vectorial function from 𝔽_{pⁿ} to 𝔽_{p^m}. For every b ∈ 𝔽^{*}_{p^m}, the component function F_b of F from 𝔽_{pⁿ} to 𝔽_p is defined as F_b(x) = Tr_m(bF(x)).
- ► A vectorial function is called *vectorial plateaued* if all its nonzero component functions are plateaued. If the nonzero component functions of a vectorial plateaued function are s-plateaued for the same 0 ≤ s ≤ n then F is called as *s-plateaued*
- ▶ The set $G_F = \{(x, F(x)) : x \in \mathbb{F}_{p^n}\}$ is called the graph of F.
- ▶ Çeşmelioğlu and O. 2018 A vectorial function F : F_{pⁿ} → F_{p^m} is s-plateaued if and only if its graph is a (p^{n+m}, pⁿ; p^{2n-m} p^{n+s-m}, p^{n+s} + p^{2n-m} p^{n+s-m}) PGDS.

Let F(x) = x^d be a vectorial function from F_{pⁿ} to F_{pⁿ} with gcd(d, pⁿ − 1) = 1. If the cross-correlation of the p-ary m-sequences that differ by decimation d takes three values, namely −1, −1 + p^{n+s/2} and −1 − p^{n+s/2}, then F is a vectorial s-plateaued function.
 Çeşmelioğlu and O. 2018

▶ Let $n \ge 3$ be an integer and $d = \frac{3^{2k}+1}{2}$ with gcd(n,k) = s and n/s is odd. For i = 0, 1, 2 the sets $D_i = \{x : F(x) = Tr_n(x^d) = i\}$ are $(3^n, 3^{n-1}, 3^{2n-3} - 3^{n-2}, 3^{n-1} + 3^{2n-3} - 3^{n-2})$ partial geometric difference sets in the additive group of \mathbb{F}_{3^n} . Çeşmelioğlu and O. 2018

$$\begin{split} \delta((x,y)) &= |\{((s_1,t_1),(s_2,t_2)) \in G_F \times G_F : \\ x &= s_1 - s_2, y = t_1 - t_2 = F(s_1) - F(s_2)\}| \\ &= |\{s_2 \in \mathbb{F}_{p^n} : y = F(s_2 + x) - F(s_2)\}| \end{split}$$

So the criteria for PGDS is given by

$$\sum_{\boldsymbol{a}\in\mathbb{F}_{p^n}}\delta((\boldsymbol{x}-\boldsymbol{a},\boldsymbol{y}-\boldsymbol{F}(\boldsymbol{a}))) = \begin{cases} \alpha & \text{if } \boldsymbol{y}\neq\boldsymbol{F}(\boldsymbol{x}),\\ \beta & \text{if } \boldsymbol{y}=\boldsymbol{F}(\boldsymbol{x}) \end{cases}$$

and hence

$$\sum_{a \in \mathbb{F}_{p^n}} |\{s \in \mathbb{F}_{p^n} \colon y = F(s + x - a) - F(s) + F(a)\}| = \begin{cases} \alpha & \text{if } y \neq F(x), \\ \beta & \text{if } y = F(x) \end{cases}$$

A p-ary function is called perfect nonlinear if

$$|\{s \in \mathbb{F}_{p^n} : y = f(s+x) - f(s)\}| = p^{n-1}$$

for all $x \in \mathbb{F}_{p^n}^*$ Graph of f is a PGDS.

$$\begin{split} \sum_{a \in \mathbb{F}_{p^n}} &|\{s \in \mathbb{F}_{p^n} \colon y = f(s + x - a) - f(s) + f(a)\}|\\ &= |\{s \in \mathbb{F}_{p^n} \colon y = f(x)\}|\\ &+ \sum_{a \in \mathbb{F}_{p^n}, a \neq x} |\{s \in \mathbb{F}_{p^n} \colon y - f(a) = f(s + x - a) - f(s)\}|\\ &= \begin{cases} (p^n - 1)p^{n-1} & \text{if } y \neq f(x),\\ (p^n - 1)p^{n-1} + p^n & \text{if } y = f(x) \end{cases} \end{split}$$

Replace y in the expression

$$y = F(s + x - a) - F(s) + F(a)$$

by $F(x) - c$ for $c \in \mathbb{F}_{p^n}$. Then
$$\sum_{a \in \mathbb{F}_{p^n}} |\{s \in \mathbb{F}_{p^n} : y = F(s + x - a) - F(s) + F(a)\}|$$
$$= |\{(t, a) \in \mathbb{F}_{p^n} \times \mathbb{F}_{p^n} : D_t F(a) - D_t F(x) = c\}|$$
$$= N_F(c, x)$$

_ /

Let *F* be a function from \mathbb{F}_{p^n} to \mathbb{F}_{p^m} . Then the set *G_F* is a PGDS with parameters $(p^{n+m}, p^n; \alpha, \beta)$ if and only if

$$N_F(c,x) = \begin{cases} \alpha, & c \neq 0 \\ \beta, & c = 0 \end{cases}$$

for all $x \in \mathbb{F}_{p^n}$ and some constants α and β .

p-arry s-plateaued functions

• $M = (m_{x,y})$ be a $p^n \times p^n$ matrix where $m_{x,y} = \zeta_p^{f(x+y)}$. Then, f is an s-plateaued function if and only if

$$MM^*M = p^{n+s}M \tag{1}$$

where M^* is the adjoint of the matrix M. **Ç. and O. 2018** A $q^n \times q^n$ Butson-Hadamard matrix M also satisfies

$$MM^*M = q^n M.$$

Our result implies that M can be associated with 0-plateaued function.

► Mesnager et al 2015 f is an s-plateaued function from 𝔽_{pⁿ} to 𝔽_p if and only if the expression ∑_{a,b∈其_{pⁿ}} ζ^{D_aD_bf(u)}_p does not depend on u ∈ 𝔽_{pⁿ}. This constant expression equals to p^{n+s}.

Let $G = H \times N$, A be a subgroup of G such that $A \cap N = \{(0,0)\}$, and $B = A \bigoplus N$. Suppose that |H| = m, |N| = n, |A| = I. We call a k-subset R of G an (m, n, I, k, λ) -partially bent relative difference set if R_1, R_2, R_3 hold:

 $R_1(x,y) \in G \setminus B$ can be represented in the form $r_1 - r_2$, $r_1, r_2 \in R$ in exactly λ ways, where we put $\lambda = p^{n-1}$.

 $R_2(x, y) \in B \setminus A$ has no representation in the form $r_1 - r_2$, $r_1, r_2 \in R$. $R_3(x, y) \in A$ can be represented in the form $r_1 - r_2$, $r_1, r_2 \in R$ in exactly |R| = k ways. **Ç. M. and T. 2014**

- Let f be partially bent with f(0) = 0, and Γ be its linear space (dimension s). We consider the sets A = {(a, f(a)) : a ∈ Γ} and B = {(a, y) : a ∈ Γ, y ∈ 𝔽_p}.
- ▶ Then the graph of *s*-partially bent functions from \mathbb{F}_{p^n} to \mathbb{F}_p is a $(p^n, p, p^s, p^n, p^{n-1})$ -partially bent relative difference set.
- Let f be an s-plateaued function with f(0) = 0 and linear structure Λ of dimension m. Then the incidence matrix A of the design associated with the partial geometric difference set G_f can be written as a Kronecker product of 1 × p^m all-ones matrix j and an incidence matrix N of a partial geometric design. **Ç. and O. 2018**

THANK YOU FOR YOUR **ATTENTION! ANY QUESTIONS?**