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R(X) € F[X] is called a permutation (polynomial) of F if the
induced map r: a+— R(a) permutes F.

Remark: R(X), Q(X) induce the same map on F if
R(X) = Q(X) mod (XP" — X).
Therefore, we suppose that deg(R) < p".
Example:
(i) R(X) =Xk e F[X]
R is a permutation of F <= gcd(k,p” — 1) = 1.
(i) R(X) =X aiXP € F[X]
R is a permutation of F <= 0 is the only root of R(X).
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Special Interest: R(X) = X* — 4Tr(X) € F[X], where
Tr(X) = X + XP +---+ XP"" " is the absolute trace function.
(Charpin, Kyureghyan, Zieve, ...)

Recall: For v =0, R(X) is not a permutation of F if
ged(k,p" —1) > 1.

Observation:

If t = ged(k, p" — 1) > p, then R(X) is not a permutation of F.

Proof: For any nonzero o € Im(X¥), set S, = {u € F | uk = a}.
Since [Im(Tr)| = p and |So| =t > p, there are ug, ux € S, with
uy # up such that Tr(uy) = Tr(uz). Therefore, we have

R(ul) = R(Uz).

Problem:

Is R(X) a permutation of F, if ged(k, p” — 1) > 17
If not, can we prove it by the theory of Algebraic Curves?
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X is defined over F if f(X,Y) € F[X, Y].
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Definition:

A curve X is a zero set of a polynomial f(X,Y) € F[X, Y], ie.,
X={(a,b)cFxF | f(a,b) =0} =: Z(f) .

X is defined over F if f(X,Y) € F[X, Y].

From now on, we suppose that X is defined over F.

P = (a,b) € X is called rational if a, b € F.
P = (a,b) € X is called singular if

_OFXY) Ly OF(XY)

f(a,b) ox (@b Y

(a,b) =0.

X is called absolutely irreducible over F if £(X, Y) is absolutely
irreducible over FF.
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X = Z(f)
N(X): the number of rational points of X

g(X): the genus of X

Hasse-Weil Bound:

If X is a projective, non-singular and absolutely irreducible (!)
curve defined over I, then

[F| + 1 — 2g(X)/|F| < N(X) < |F| + 1+ 2g(X)/|F|.

Hasse-Weil Bound = sufficiently many rational points if |F| is
sufficiently large compared to g(X’) (which depends on deg(f))!



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.

(i) X = Z(f) is an absolutely irreducible curve over F.



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.

(i) X = Z(f) is an absolutely irreducible curve over F.
(iii) UP: the number unwanted rational points (corresponding to
ones at infinity + singular + on X =Y')



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.

(i) X = Z(f) is an absolutely irreducible curve over F.

(iii) UP: the number unwanted rational points (corresponding to
ones at infinity + singular + on X =Y')

(iv) |F| = p" is sufficiently large = N(X) —UP >0



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.

(i) X = Z(f) is an absolutely irreducible curve over F.

(iii) UP: the number unwanted rational points (corresponding to
ones at infinity + singular + on X =Y')

(iv) |F| = p" is sufficiently large = N(X) —UP >0
— 7 a rational point P = (o, 5) € X with a # 8



Curves and Permutation Polynomials
Approach by the Hasse-Weil Bound

Given R(X) € F[X], define g(X, ¥) = BX)=EM) c px, v,
3 (a,B) € F x F such that « # 3 and g(a, ) =0

= R(a) = R(p) such that o # 3
= R(X) is not a permutation.

Common Approach:
(i) g(X,Y) has an absolutely irreducible factor f(X,Y) over F.

(i) X = Z(f) is an absolutely irreducible curve over F.

(iii) UP: the number unwanted rational points (corresponding to
ones at infinity + singular + on X =Y')

(iv) |F| = p" is sufficiently large = N(X) —UP >0
— 7 a rational point P = (o, 5) € X with a # 8
— 3 (o, 8) € F x F such that @ # 8 and g(«, 5) = 0.
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Different Approach

Remark: We can not apply the common approach for

R(X) = XK = qT(X) = X5 =5 (X 4+ XP 4 X7
as deg(R(X)) = p"~ !
Another Approach: We separate the multiplicative and the

additive structure of the field to construct curves with many
(affine) rational points.

R(X) is not a permutation of F if gcd(k, p” — 1) > 1.
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Idea of the proof:

Suppose that v # 0.
Set t = ged(k, p" — 1) > 1 and H = (¢*) < Fjn, where ( is the
primitive element of [Fpn.

Recall: We consider the solutions of %X" = Tr(X) + c for
ceE Fpn.

We define (X, Y) = %Xk — Tr(Y) — ¢ and set X, = Z(f).
By Function Field Theory:
fo(X,Y) is absolutely irreducible over Fpn.

Jtp" 1 (affine) rational points of X for all n € <%H> N(c+Fp).
Ucer,, (¢ +Fp) = Fpn = Jc € Fpn such that N(Xc) > p".
Set X = X..
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Recall:
X = Z(f;), where fo(X,Y) = 2X* —Tr(Y) — ¢

R(X) = Xk — 4Tr(X) € Fp

Set L={Llyg:Y=X+d | deFp}
Remark: Uy o ld 2 Fpn X Fpn

We have |£]| = p" and N(X) > p".

= Jd € Fpn such that X' N {4 has at least two rational points,
say (a,a+ d) and (B, 8 + d) with a # 5.

== %O/‘—Tr(oﬂrd)—c:%ﬁk—Tr(ﬁqLd)—c:O.
—> ok —yTr(e) = 5 —7Tr(8) = yc +~Tr(d).
= R(a) = R(p) such that o # S.
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Remark: We can generalize the result for any prime power!

Let g = p™ and R(X) = Xk — yTx7(X) € Fyn[X], where
T (X) =X+ X9+ -+ X9, mn k € Zso and v € Fgn. If
ged(k,g" — 1) > 1, then R(X) is not a permutation of Fgn.

Corollary:
(i) Let g =2" with m=2s, s > 1, and
R(X) = X3t —4Tr7(X) € Fgn[X]. Then R(X) is not a
permutation of Fgn for all n > 1.

(i) Let p be an odd prime, g = p™, m > 1, and
R(X) = X2t —4Tr](X) € Fgn[X]. Then R(X) is not a
permutation of Fgn for all n > 1.
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Thanks for your attention!
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