Permutations of the Form $x^k - \gamma \text{Tr}(x)$ and Curves over Finite Fields

Nurdagül Anbar

Sabancı University

Boolean Functions and their Applications (BFA) June 16-21, 2019

Dedicated to the 70th birthday of Claude Carlet

- *p*: a prime number
- \mathbb{F} : the finite field of order p^n
- $\bar{\mathbb{F}}\colon$ the algebraic closure of $\mathbb F$

 $R(X) \in \mathbb{F}[X]$ is called a permutation (polynomial) of \mathbb{F} if the induced map $r : \alpha \mapsto R(\alpha)$ permutes \mathbb{F} .

Remark: R(X), Q(X) induce the same map on \mathbb{F} if $R(X) \equiv Q(X) \mod (X^{p^n} - X)$. Therefore, we suppose that $\deg(R) < p^n$.

Example:

- *p*: a prime number
- \mathbb{F} : the finite field of order p^n
- $\bar{\mathbb{F}}\colon$ the algebraic closure of $\mathbb F$

 $R(X) \in \mathbb{F}[X]$ is called a permutation (polynomial) of \mathbb{F} if the induced map $r : \alpha \mapsto R(\alpha)$ permutes \mathbb{F} .

Remark: R(X), Q(X) induce the same map on \mathbb{F} if $R(X) \equiv Q(X) \mod (X^{p^n} - X)$. Therefore, we suppose that $\deg(R) < p^n$.

Example:

- *p*: a prime number
- \mathbb{F} : the finite field of order p^n
- $\bar{\mathbb{F}}\colon$ the algebraic closure of $\mathbb F$

 $R(X) \in \mathbb{F}[X]$ is called a permutation (polynomial) of \mathbb{F} if the induced map $r : \alpha \mapsto R(\alpha)$ permutes \mathbb{F} .

Remark: R(X), Q(X) induce the same map on \mathbb{F} if $R(X) \equiv Q(X) \mod (X^{p^n} - X)$. Therefore, we suppose that $\deg(R) < p^n$.

Example:

- *p*: a prime number
- \mathbb{F} : the finite field of order p^n
- $\bar{\mathbb{F}} {:}$ the algebraic closure of \mathbb{F}

 $R(X) \in \mathbb{F}[X]$ is called a permutation (polynomial) of \mathbb{F} if the induced map $r : \alpha \mapsto R(\alpha)$ permutes \mathbb{F} .

Remark: R(X), Q(X) induce the same map on \mathbb{F} if $R(X) \equiv Q(X) \mod (X^{p^n} - X)$. Therefore, we suppose that $\deg(R) < p^n$.

Example:

(i) R(X) = X^k ∈ 𝔅[X] R is a permutation of 𝔅 ⇐⇒ gcd(k, pⁿ - 1) = 1.
(ii) R(X) = ∑_{i=0}^m a_iX^{pi} ∈ 𝔅[X] R is a permutation of 𝔅 ⇐⇒ 0 is the only root of R(X). **Special Interest:** $R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}[X]$, where $\operatorname{Tr}(X) = X + X^p + \cdots + X^{p^{n-1}}$ is the absolute trace function. (Charpin, Kyureghyan, Zieve, ...) **Recall:** For $\gamma = 0$, R(X) is not a permutation of \mathbb{F} if $\operatorname{gcd}(k, p^n - 1) > 1$.

Observation:

If $t = \operatorname{gcd}(k, p^n - 1) > p$, then R(X) is not a permutation of \mathbb{F} .

Proof: For any nonzero $\alpha \in \text{Im}(X^k)$, set $S_{\alpha} = \{u \in \mathbb{F} \mid u^k = \alpha\}$. Since |Im(Tr)| = p and $|S_{\alpha}| = t > p$, there are $u_1, u_2 \in S_{\alpha}$ with $u_1 \neq u_2$ such that $\text{Tr}(u_1) = \text{Tr}(u_2)$. Therefore, we have $R(u_1) = R(u_2)$.

Problem:

Is R(X) a permutation of \mathbb{F} , if $gcd(k, p^n - 1) > 1$? If not, can we prove it by the theory of Algebraic Curves?

Special Interest: $R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}[X]$, where $\operatorname{Tr}(X) = X + X^p + \cdots + X^{p^{n-1}}$ is the absolute trace function. (Charpin, Kyureghyan, Zieve, ...) **Recall:** For $\gamma = 0$, R(X) is not a permutation of \mathbb{F} if

 $gcd(k, p^n - 1) > 1.$

Observation:

If $t = \operatorname{gcd}(k, p^n - 1) > p$, then R(X) is not a permutation of \mathbb{F} .

Proof: For any nonzero $\alpha \in \text{Im}(X^k)$, set $S_{\alpha} = \{u \in \mathbb{F} \mid u^k = \alpha\}$. Since |Im(Tr)| = p and $|S_{\alpha}| = t > p$, there are $u_1, u_2 \in S_{\alpha}$ with $u_1 \neq u_2$ such that $\text{Tr}(u_1) = \text{Tr}(u_2)$. Therefore, we have $R(u_1) = R(u_2)$.

Problem:

Is R(X) a permutation of \mathbb{F} , if $gcd(k, p^n - 1) > 1$? If not, can we prove it by the theory of Algebraic Curves?

Special Interest: $R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}[X]$, where $\operatorname{Tr}(X) = X + X^p + \cdots + X^{p^{n-1}}$ is the absolute trace function. (Charpin, Kyureghyan, Zieve, ...) **Recall:** For $\gamma = 0$, R(X) is not a permutation of \mathbb{F} if

 $gcd(k, p^n - 1) > 1.$

Observation:

If $t = \operatorname{gcd}(k, p^n - 1) > p$, then R(X) is not a permutation of \mathbb{F} .

Proof: For any nonzero $\alpha \in \text{Im}(X^k)$, set $S_{\alpha} = \{u \in \mathbb{F} \mid u^k = \alpha\}$. Since |Im(Tr)| = p and $|S_{\alpha}| = t > p$, there are $u_1, u_2 \in S_{\alpha}$ with $u_1 \neq u_2$ such that $\text{Tr}(u_1) = \text{Tr}(u_2)$. Therefore, we have $R(u_1) = R(u_2)$.

Problem:

Is R(X) a permutation of \mathbb{F} , if $gcd(k, p^n - 1) > 1$? If not, can we prove it by the theory of Algebraic Curves?

Definition:

A curve \mathcal{X} is a zero set of a polynomial $f(X, Y) \in \overline{\mathbb{F}}[X, Y]$, i.e.,

$$\mathcal{X} = \{ \ (a,b) \in ar{\mathbb{F}} imes ar{\mathbb{F}} \ \mid \ f(a,b) = 0 \ \} =: \mathcal{Z}(f) \ .$$

 \mathcal{X} is defined over \mathbb{F} if $f(X, Y) \in \mathbb{F}[X, Y]$.

From now on, we suppose that \mathcal{X} is defined over \mathbb{F} .

 $P = (a, b) \in \mathcal{X}$ is called rational if $a, b \in \mathbb{F}$.

 $P = (a, b) \in \mathcal{X}$ is called singular if

$$f(a,b) = \frac{\partial f(X,Y)}{\partial X}(a,b) = \frac{\partial f(X,Y)}{\partial Y}(a,b) = 0.$$

 \mathcal{X} is called absolutely irreducible over \mathbb{F} if f(X, Y) is absolutely irreducible over \mathbb{F} .

Definition:

A curve \mathcal{X} is a zero set of a polynomial $f(X, Y) \in \overline{\mathbb{F}}[X, Y]$, i.e.,

$$\mathcal{X} = \{ \; (\mathsf{a}, b) \in ar{\mathbb{F}} imes ar{\mathbb{F}} \; \mid \; f(\mathsf{a}, b) = \mathsf{0} \; \} =: \mathcal{Z}(f) \; .$$

 \mathcal{X} is defined over \mathbb{F} if $f(X, Y) \in \mathbb{F}[X, Y]$.

From now on, we suppose that \mathcal{X} is defined over \mathbb{F} .

 $P = (a, b) \in \mathcal{X}$ is called rational if $a, b \in \mathbb{F}$.

 $P = (a, b) \in \mathcal{X}$ is called singular if

$$f(a,b) = \frac{\partial f(X,Y)}{\partial X}(a,b) = \frac{\partial f(X,Y)}{\partial Y}(a,b) = 0.$$

 \mathcal{X} is called absolutely irreducible over \mathbb{F} if f(X, Y) is absolutely irreducible over \mathbb{F} .

 $\mathcal{X} = \mathcal{Z}(f)$

 $N(\mathcal{X})$: the number of rational points of \mathcal{X}

 $g(\mathcal{X})$: the genus of \mathcal{X}

Hasse-Weil Bound:

If \mathcal{X} is a projective, non-singular and absolutely irreducible (!) curve defined over \mathbb{F} , then

$$|\mathbb{F}| + 1 - 2g(\mathcal{X})\sqrt{|\mathbb{F}|} \leq N(\mathcal{X}) \leq |\mathbb{F}| + 1 + 2g(\mathcal{X})\sqrt{|\mathbb{F}|}.$$

Hasse-Weil Bound \implies sufficiently many rational points if $|\mathbb{F}|$ is sufficiently large compared to $g(\mathcal{X})$ (which depends on $\deg(f)$)!

 $\mathcal{X} = \mathcal{Z}(f)$

 $\mathit{N}(\mathcal{X})$: the number of rational points of \mathcal{X}

 $g(\mathcal{X})$: the genus of \mathcal{X}

Hasse-Weil Bound:

If \mathcal{X} is a projective, non-singular and <u>absolutely irreducible</u> (!) curve defined over \mathbb{F} , then

$$|\mathbb{F}| + 1 - 2g(\mathcal{X})\sqrt{|\mathbb{F}|} \leq \mathcal{N}(\mathcal{X}) \leq |\mathbb{F}| + 1 + 2g(\mathcal{X})\sqrt{|\mathbb{F}|}$$

Hasse-Weil Bound \implies sufficiently many rational points if $|\mathbb{F}|$ is sufficiently large compared to $g(\mathcal{X})$ (which depends on $\deg(f)$)!

 $\mathcal{X} = \mathcal{Z}(f)$

 $N(\mathcal{X})$: the number of rational points of \mathcal{X}

 $g(\mathcal{X})$: the genus of \mathcal{X}

Hasse-Weil Bound:

If \mathcal{X} is a projective, non-singular and <u>absolutely irreducible</u> (!) curve defined over \mathbb{F} , then

$$|\mathbb{F}| + 1 - 2g(\mathcal{X})\sqrt{|\mathbb{F}|} \le N(\mathcal{X}) \le |\mathbb{F}| + 1 + 2g(\mathcal{X})\sqrt{|\mathbb{F}|}$$

Hasse-Weil Bound \implies sufficiently many rational points if $|\mathbb{F}|$ is sufficiently large compared to $g(\mathcal{X})$ (which depends on $\deg(f)$)!

Approach by the Hasse-Weil Bound

Given $R(X) \in \mathbb{F}[X]$, define $g(X, Y) = \frac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X, Y]$.

- $\exists\;(lpha,eta)\in\mathbb{F} imes\mathbb{F}$ such that lpha
 eqeta and g(lpha,eta)=0
- $\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$ $\implies R(X) \text{ is not a permutation.}$

Common Approach:

- (i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .
- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)
- (iv) $|\mathbb{F}| = p^n$ is sufficiently large $\implies N(\mathcal{X}) \mathcal{UP} > 0$ $\implies \exists$ a rational point $P = (\alpha, \beta) \in \mathcal{X}$ with $\alpha \neq \beta$ $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F}$ such that $\alpha \neq \beta$ and $g(\alpha, \beta) = 0$.

Approach by the Hasse-Weil Bound

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X,Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X,Y].$

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)

(iv)
$$|\mathbb{F}| = p^n$$
 is sufficiently large $\implies N(\mathcal{X}) - \mathcal{UP} > 0$
 $\implies \exists$ a rational point $P = (\alpha, \beta) \in \mathcal{X}$ with $\alpha \neq \beta$
 $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F}$ such that $\alpha \neq \beta$ and $g(\alpha, \beta) = 0$.

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X, Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X, Y]$.

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

(ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .

- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)
- (iv) $|\mathbb{F}| = p^n$ is sufficiently large $\implies N(\mathcal{X}) \mathcal{UP} > 0$ $\implies \exists \text{ a rational point } P = (\alpha, \beta) \in \mathcal{X} \text{ with } \alpha \neq \beta$ $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha, \beta) = 0.$

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X, Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X, Y]$.

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

(ii)
$$\mathcal{X} = \mathcal{Z}(f)$$
 is an absolutely irreducible curve over \mathbb{F} .

- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)
- (iv) $|\mathbb{F}| = p^n$ is sufficiently large $\implies N(\mathcal{X}) \mathcal{UP} > 0$ $\implies \exists \text{ a rational point } P = (\alpha, \beta) \in \mathcal{X} \text{ with } \alpha \neq \beta$ $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha, \beta) = 0.$

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X,Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X,Y].$

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)

(iv) $|\mathbb{F}| = p^n$ is sufficiently large $\implies N(\mathcal{X}) - \mathcal{UP} > 0$ $\implies \exists \text{ a rational point } P = (\alpha, \beta) \in \mathcal{X} \text{ with } \alpha \neq \beta$ $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha, \beta) = 0.$

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X,Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X,Y].$

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)

(iv)
$$|\mathbb{F}| = p^n$$
 is sufficiently large $\implies N(\mathcal{X}) - \mathcal{UP} > 0$
 $\implies \exists \text{ a rational point } P = (\alpha, \beta) \in \mathcal{X} \text{ with } \alpha \neq \beta$
 $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha, \beta) = 0.$

Approach by the Hasse-Weil Bound

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X, Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X, Y]$.

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

(i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .

- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)

(iv)
$$|\mathbb{F}| = p^n$$
 is sufficiently large $\implies N(\mathcal{X}) - \mathcal{UP} > 0$

$$\implies \exists$$
 a rational point $P = (\alpha, \beta) \in \mathcal{X}$ with $\alpha \neq \beta$

 $\Longrightarrow \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F}$ such that $\alpha \neq \beta$ and $g(\alpha, \beta) = 0$.

Given
$$R(X) \in \mathbb{F}[X]$$
, define $g(X,Y) = rac{R(X) - R(Y)}{X - Y} \in \mathbb{F}[X,Y].$

$$\exists \ (\alpha,\beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha,\beta) = 0$$

$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta$$
$$\implies R(X) \text{ is not a permutation.}$$

Common Approach:

- (i) g(X, Y) has an absolutely irreducible factor f(X, Y) over \mathbb{F} .
- (ii) $\mathcal{X} = \mathcal{Z}(f)$ is an absolutely irreducible curve over \mathbb{F} .
- (iii) UP: the number unwanted rational points (corresponding to ones at infinity + singular + on X = Y)

(iv)
$$|\mathbb{F}| = p^n$$
 is sufficiently large $\implies N(\mathcal{X}) - \mathcal{UP} > 0$
 $\implies \exists \text{ a rational point } P = (\alpha, \beta) \in \mathcal{X} \text{ with } \alpha \neq \beta$
 $\implies \exists (\alpha, \beta) \in \mathbb{F} \times \mathbb{F} \text{ such that } \alpha \neq \beta \text{ and } g(\alpha, \beta) = 0.$

Different Approach

Remark: We can not apply the common approach for

$$R(X) = X^{k} - \gamma \operatorname{Tr}(X) = X^{k} - \gamma \left(X + X^{p} + \dots + X^{p^{n-1}}\right)$$

as $\deg(R(X)) = p^{n-1}!$

Another Approach: We separate the <u>multiplicative</u> and the <u>additive</u> structure of the field to construct curves with many (affine) rational points.

Theorem:

R(X) is not a permutation of \mathbb{F} if $gcd(k, p^n - 1) > 1$.

Different Approach

Remark: We can not apply the common approach for

$$R(X) = X^{k} - \gamma \operatorname{Tr}(X) = X^{k} - \gamma \left(X + X^{p} + \dots + X^{p^{n-1}}\right)$$

as $\deg(R(X)) = p^{n-1}!$

Another Approach: We separate the <u>multiplicative</u> and the <u>additive</u> structure of the field to construct curves with many (affine) rational points.

Theorem:

R(X) is not a permutation of \mathbb{F} if $gcd(k, p^n - 1) > 1$.

Different Approach

Remark: We can not apply the common approach for

$$R(X) = X^{k} - \gamma \operatorname{Tr}(X) = X^{k} - \gamma \left(X + X^{p} + \dots + X^{p^{n-1}}\right)$$

as $\deg(R(X)) = p^{n-1}!$

Another Approach: We separate the <u>multiplicative</u> and the <u>additive</u> structure of the field to construct curves with many (affine) rational points.

Theorem:

R(X) is not a permutation of \mathbb{F} if $gcd(k, p^n - 1) > 1$.

Idea of the proof:

Suppose that $\gamma \neq 0$. Set $t = \gcd(k, p^n - 1) > 1$ and $H = \langle \zeta^t \rangle \leq \mathbb{F}_{p^n}^*$, where ζ is the primitive element of \mathbb{F}_{p^n} .

Recall: We consider the solutions of $\frac{1}{\gamma}X^k = \text{Tr}(X) + c$ for $c \in \mathbb{F}_{p^n}$.

We define $f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c$ and set $\mathcal{X}_c = \mathcal{Z}(f_c)$.

By Function Field Theory:

 $f_c(X, Y)$ is absolutely irreducible over \mathbb{F}_{p^n} .

 $\exists tp^{n-1} \text{ (affine) rational points of } \mathcal{X}_c \text{ for all } \eta \in \left(\frac{1}{\gamma}H\right) \cap (c + \mathbb{F}_p).$ $\bigcup_{c \in \mathbb{F}_{p^n}} (c + \mathbb{F}_p) = \mathbb{F}_{p^n} \Longrightarrow \exists c \in \mathbb{F}_{p^n} \text{ such that } N(\mathcal{X}_c) > p^n.$ Set $\mathcal{X} = \mathcal{X}_c.$

Idea of the proof:

Suppose that $\gamma \neq 0$. Set $t = \operatorname{gcd}(k, p^n - 1) > 1$ and $H = \langle \zeta^t \rangle \leq \mathbb{F}_{p^n}^*$, where ζ is the primitive element of \mathbb{F}_{p^n} .

Recall: We consider the solutions of $\frac{1}{\gamma}X^k = \text{Tr}(X) + c$ for $c \in \mathbb{F}_{p^n}$.

We define $f_c(X, Y) = \frac{1}{\gamma}X^k - \operatorname{Tr}(Y) - c$ and set $\mathcal{X}_c = \mathcal{Z}(f_c)$.

By Function Field Theory:

 $f_c(X, Y)$ is absolutely irreducible over \mathbb{F}_{p^n} .

 $\exists t p^{n-1} \text{ (affine) rational points of } \mathcal{X}_c \text{ for all } \eta \in \left(\frac{1}{\gamma}H\right) \cap (c + \mathbb{F}_p).$ $\bigcup_{c \in \mathbb{F}_{p^n}} (c + \mathbb{F}_p) = \mathbb{F}_{p^n} \Longrightarrow \exists c \in \mathbb{F}_{p^n} \text{ such that } N(\mathcal{X}_c) > p^n.$ Set $\mathcal{X} = \mathcal{X}_c.$

Idea of the proof:

Suppose that $\gamma \neq 0$. Set $t = \gcd(k, p^n - 1) > 1$ and $H = \langle \zeta^t \rangle \leq \mathbb{F}_{p^n}^*$, where ζ is the primitive element of \mathbb{F}_{p^n} .

Recall: We consider the solutions of $\frac{1}{\gamma}X^k = \text{Tr}(X) + c$ for $c \in \mathbb{F}_{p^n}$.

We define $f_c(X, Y) = \frac{1}{\gamma}X^k - \text{Tr}(Y) - c$ and set $\mathcal{X}_c = \mathcal{Z}(f_c)$.

By Function Field Theory:

 $f_c(X, Y)$ is absolutely irreducible over \mathbb{F}_{p^n} .

 $\exists tp^{n-1}$ (affine) rational points of \mathcal{X}_c for all $\eta \in \left(\frac{1}{\gamma}H\right) \cap (c + \mathbb{F}_p)$.

 $\bigcup_{c \in \mathbb{F}_{p^n}} (c + \mathbb{F}_p) = \mathbb{F}_{p^n} \Longrightarrow \exists c \in \mathbb{F}_{p^n} \text{ such that } N(\mathcal{X}_c) > p^n.$ Set $\mathcal{X} = \mathcal{X}_c.$

Idea of the proof:

Suppose that $\gamma \neq 0$. Set $t = \operatorname{gcd}(k, p^n - 1) > 1$ and $H = \langle \zeta^t \rangle \leq \mathbb{F}_{p^n}^*$, where ζ is the primitive element of \mathbb{F}_{p^n} .

Recall: We consider the solutions of $\frac{1}{\gamma}X^k = \text{Tr}(X) + c$ for $c \in \mathbb{F}_{p^n}$.

We define $f_c(X, Y) = \frac{1}{\gamma}X^k - \text{Tr}(Y) - c$ and set $\mathcal{X}_c = \mathcal{Z}(f_c)$.

By Function Field Theory:

 $f_c(X, Y)$ is absolutely irreducible over \mathbb{F}_{p^n} .

 $\exists tp^{n-1} \text{ (affine) rational points of } \mathcal{X}_c \text{ for all } \eta \in \left(\frac{1}{\gamma}H\right) \cap (c + \mathbb{F}_p).$ $\bigcup_{c \in \mathbb{F}_{p^n}} (c + \mathbb{F}_p) = \mathbb{F}_{p^n} \Longrightarrow \exists c \in \mathbb{F}_{p^n} \text{ such that } N(\mathcal{X}_c) > p^n.$ Set $\mathcal{X} = \mathcal{X}_c.$

Idea of the proof:

Suppose that $\gamma \neq 0$. Set $t = \gcd(k, p^n - 1) > 1$ and $H = \langle \zeta^t \rangle \leq \mathbb{F}_{p^n}^*$, where ζ is the primitive element of \mathbb{F}_{p^n} .

Recall: We consider the solutions of $\frac{1}{\gamma}X^k = \text{Tr}(X) + c$ for $c \in \mathbb{F}_{p^n}$.

We define $f_c(X, Y) = \frac{1}{\gamma}X^k - \text{Tr}(Y) - c$ and set $\mathcal{X}_c = \mathcal{Z}(f_c)$.

By Function Field Theory:

 $f_c(X, Y)$ is absolutely irreducible over \mathbb{F}_{p^n} .

 $\exists tp^{n-1} \text{ (affine) rational points of } \mathcal{X}_c \text{ for all } \eta \in \left(\frac{1}{\gamma}H\right) \cap (c + \mathbb{F}_p).$ $\bigcup_{c \in \mathbb{F}_{p^n}} (c + \mathbb{F}_p) = \mathbb{F}_{p^n} \Longrightarrow \exists c \in \mathbb{F}_{p^n} \text{ such that } N(\mathcal{X}_c) > p^n.$ Set $\mathcal{X} = \mathcal{X}_c.$

・ロット (雪) (日) (日) (日)

Recall: $\mathcal{X} = \mathcal{T}(f)$ where f

 $\mathcal{X} = \mathcal{Z}(f_c)$, where $f_c(X, Y) = \frac{1}{\gamma}X^k - \operatorname{Tr}(Y) - c$ $R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$

Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$

Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have $|\mathcal{L}| = p^n$ and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

 $\implies \frac{1}{\gamma}\alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^k - \operatorname{Tr}(\beta + d) - c = 0.$

(日本)(四本)(日本)(日本)

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c)$$
, where $f_c(X, Y) = \frac{1}{\gamma}X^k - \operatorname{Tr}(Y) - c$
 $R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$

Set
$$\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$$

Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have $|\mathcal{L}| = p^n$ and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^{\alpha}}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

$$\implies \frac{1}{\gamma}\alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^k - \operatorname{Tr}(\beta + d) - c = 0.$$

$$\implies \alpha^{k} - \gamma \operatorname{Tr}(\alpha) = \beta^{k} - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$$

・ コット 全部 マイリット 日マ

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c), \text{ where } f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c$$
$$R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$$
Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$ Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have $|\mathcal{L}| = p^n$ and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

 $\implies \frac{1}{\gamma}\alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^k - \operatorname{Tr}(\beta + d) - c = 0.$

$$\implies \alpha^{k} - \gamma \operatorname{Tr}(\alpha) = \beta^{k} - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$$

ヘロト ヘ週ト ヘヨト ヘヨト

Ξ.

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c), \text{ where } f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c$$
$$R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$$
Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$ Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have
$$|\mathcal{L}| = p^n$$
 and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

$$\implies \frac{1}{\gamma}\alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^k - \operatorname{Tr}(\beta + d) - c = 0.$$

$$\implies \alpha^k - \gamma \operatorname{Tr}(\alpha) = \beta^k - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$$

・ロット (雪) (日) (日) (日)

Recall:

$$\begin{aligned} \mathcal{X} &= \mathcal{Z}(f_c), \text{ where } f_c(X,Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c \\ R(X) &= X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n} \\ \text{Set } \mathcal{L} &= \{ \ \ell_d : Y = X + d \ | \ d \in \mathbb{F}_{p^n} \}. \end{aligned}$$
Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have
$$|\mathcal{L}| = p^n$$
 and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

 $\Longrightarrow \frac{1}{\alpha} \alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\alpha} \beta^k - \operatorname{Tr}(\beta + d) - c = 0.$

 $\implies \alpha^k - \gamma \operatorname{Tr}(\alpha) = \beta^k - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$

 $\Longrightarrow R(lpha) = R(eta)$ such that lpha
eq eta.

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c), \text{ where } f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - d$$
$$R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$$
Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$ Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have $|\mathcal{L}| = p^n$ and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n}$ such that $\mathcal{X} \cap \ell_d$ has at least two rational points, say $(\alpha, \alpha + d)$ and $(\beta, \beta + d)$ with $\alpha \neq \beta$.

$$\implies \frac{1}{\gamma}\alpha^k - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^k - \operatorname{Tr}(\beta + d) - c = 0.$$

 $\implies \alpha^k - \gamma \operatorname{Tr}(\alpha) = \beta^k - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \(\mathcal{O}\) \(\lambda\) \(\lambda\)

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c), \text{ where } f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c$$
$$R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$$
Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$ Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have
$$|\mathcal{L}| = p^n$$
 and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n} \text{ such that } \mathcal{X} \cap \ell_d \text{ has at least two rational points,} \\ \text{say } (\alpha, \alpha + d) \text{ and } (\beta, \beta + d) \text{ with } \alpha \neq \beta. \end{cases}$

$$\implies \frac{1}{\gamma}\alpha^{k} - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^{k} - \operatorname{Tr}(\beta + d) - c = 0.$$
$$\implies \alpha^{k} - \gamma \operatorname{Tr}(\alpha) = \beta^{k} - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$$
$$\implies B(\alpha) = B(\beta) \text{ such that } \alpha \neq \beta$$

Recall:

$$\mathcal{X} = \mathcal{Z}(f_c), \text{ where } f_c(X, Y) = \frac{1}{\gamma} X^k - \operatorname{Tr}(Y) - c$$
$$R(X) = X^k - \gamma \operatorname{Tr}(X) \in \mathbb{F}_{p^n}$$
Set $\mathcal{L} = \{ \ell_d : Y = X + d \mid d \in \mathbb{F}_{p^n} \}.$ Remark: $\bigcup_{\ell_d \in \mathcal{L}} \ell_d \supseteq \mathbb{F}_{p^n} \times \mathbb{F}_{p^n}$

We have $|\mathcal{L}| = p^n$ and $N(\mathcal{X}) > p^n$.

 $\implies \exists d \in \mathbb{F}_{p^n} \text{ such that } \mathcal{X} \cap \ell_d \text{ has at least two rational points,} \\ \text{say } (\alpha, \alpha + d) \text{ and } (\beta, \beta + d) \text{ with } \alpha \neq \beta. \end{cases}$

$$\implies \frac{1}{\gamma}\alpha^{k} - \operatorname{Tr}(\alpha + d) - c = \frac{1}{\gamma}\beta^{k} - \operatorname{Tr}(\beta + d) - c = 0.$$
$$\implies \alpha^{k} - \gamma \operatorname{Tr}(\alpha) = \beta^{k} - \gamma \operatorname{Tr}(\beta) = \gamma c + \gamma \operatorname{Tr}(d).$$
$$\implies R(\alpha) = R(\beta) \text{ such that } \alpha \neq \beta.$$

Remark: We can generalize the result for any prime power!

Theorem:

Let $q = p^m$ and $R(X) = X^k - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$, where $\operatorname{Tr}_m^n(X) = X + X^q + \cdots + X^{q^{n-1}}$, $m, n, k \in \mathbb{Z}_{>0}$ and $\gamma \in \mathbb{F}_{q^n}$. If $\operatorname{gcd}(k, q^n - 1) > 1$, then R(X) is not a permutation of \mathbb{F}_{q^n} .

Corollary:

(i) Let
$$q = 2^m$$
 with $m = 2s$, $s \ge 1$, and
 $R(X) = X^{3t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then $R(X)$ is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

(ii) Let p be an odd prime, $q = p^m$, $m \ge 1$, and $R(X) = X^{2t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then R(X) is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: We can generalize the result for any prime power!

Theorem:

Let
$$q = p^m$$
 and $R(X) = X^k - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$, where
 $\operatorname{Tr}_m^n(X) = X + X^q + \cdots + X^{q^{n-1}}$, $m, n, k \in \mathbb{Z}_{>0}$ and $\gamma \in \mathbb{F}_{q^n}$. If
 $\operatorname{gcd}(k, q^n - 1) > 1$, then $R(X)$ is not a permutation of \mathbb{F}_{q^n} .

Corollary:

(i) Let
$$q = 2^m$$
 with $m = 2s$, $s \ge 1$, and
 $R(X) = X^{3t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then $R(X)$ is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

(ii) Let p be an odd prime, $q = p^m$, $m \ge 1$, and $R(X) = X^{2t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then R(X) is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: We can generalize the result for any prime power!

Theorem:

Let
$$q = p^m$$
 and $R(X) = X^k - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$, where
 $\operatorname{Tr}_m^n(X) = X + X^q + \cdots + X^{q^{n-1}}$, $m, n, k \in \mathbb{Z}_{>0}$ and $\gamma \in \mathbb{F}_{q^n}$. If
 $\operatorname{gcd}(k, q^n - 1) > 1$, then $R(X)$ is not a permutation of \mathbb{F}_{q^n} .

Corollary:

(i) Let
$$q = 2^m$$
 with $m = 2s$, $s \ge 1$, and $R(X) = X^{3t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then $R(X)$ is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

(ii) Let p be an odd prime, $q = p^m$, $m \ge 1$, and $R(X) = X^{2t} - \gamma \operatorname{Tr}_m^n(X) \in \mathbb{F}_{q^n}[X]$. Then R(X) is not a permutation of \mathbb{F}_{q^n} for all $n \ge 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thanks for your attention!