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Introduction Curves over Finite Fields Curves and Permutation Polynomials

p: a prime number

F: the finite field of order pn

F̄: the algebraic closure of F

Recall:

R(X ) ∈ F[X ] is called a permutation (polynomial) of F if the
induced map r : α 7→ R(α) permutes F.

Remark: R(X ),Q(X ) induce the same map on F if
R(X ) ≡ Q(X ) mod (X pn − X ).
Therefore, we suppose that deg(R) < pn.

Example:

(i) R(X ) = X k ∈ F[X ]
R is a permutation of F ⇐⇒ gcd(k , pn − 1) = 1.

(ii) R(X ) =
∑m

i=0 aiX
pi ∈ F[X ]

R is a permutation of F ⇐⇒ 0 is the only root of R(X ).
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Special Interest: R(X ) = X k − γTr(X ) ∈ F[X ], where
Tr(X ) = X + X p + · · ·+ X pn−1

is the absolute trace function.

(Charpin, Kyureghyan, Zieve, ...)

Recall: For γ = 0, R(X ) is not a permutation of F if
gcd(k , pn − 1) > 1.

Observation:

If t = gcd(k , pn − 1) > p, then R(X ) is not a permutation of F.

Proof: For any nonzero α ∈ Im(X k), set Sα = {u ∈ F | uk = α}.
Since |Im(Tr)| = p and |Sα| = t > p, there are u1, u2 ∈ Sα with
u1 6= u2 such that Tr(u1) = Tr(u2). Therefore, we have
R(u1) = R(u2).

Problem:

Is R(X ) a permutation of F, if gcd(k , pn − 1) > 1?
If not, can we prove it by the theory of Algebraic Curves?
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Introduction Curves over Finite Fields Curves and Permutation Polynomials

Definition:

A curve X is a zero set of a polynomial f (X ,Y ) ∈ F̄[X ,Y ], i.e.,

X = { (a, b) ∈ F̄× F̄ | f (a, b) = 0 } =: Z(f ) .

X is defined over F if f (X ,Y ) ∈ F[X ,Y ].

From now on, we suppose that X is defined over F.

P = (a, b) ∈ X is called rational if a, b ∈ F.

P = (a, b) ∈ X is called singular if

f (a, b) =
∂f (X ,Y )

∂X
(a, b) =

∂f (X ,Y )

∂Y
(a, b) = 0.

X is called absolutely irreducible over F if f (X ,Y ) is absolutely
irreducible over F.



Introduction Curves over Finite Fields Curves and Permutation Polynomials

Definition:

A curve X is a zero set of a polynomial f (X ,Y ) ∈ F̄[X ,Y ], i.e.,

X = { (a, b) ∈ F̄× F̄ | f (a, b) = 0 } =: Z(f ) .

X is defined over F if f (X ,Y ) ∈ F[X ,Y ].

From now on, we suppose that X is defined over F.

P = (a, b) ∈ X is called rational if a, b ∈ F.

P = (a, b) ∈ X is called singular if

f (a, b) =
∂f (X ,Y )

∂X
(a, b) =

∂f (X ,Y )

∂Y
(a, b) = 0.

X is called absolutely irreducible over F if f (X ,Y ) is absolutely
irreducible over F.



Introduction Curves over Finite Fields Curves and Permutation Polynomials

X = Z(f )

N(X ): the number of rational points of X

g(X ): the genus of X

Hasse-Weil Bound:

If X is a projective, non-singular and absolutely irreducible (!)
curve defined over F, then

|F|+ 1− 2g(X )
√
|F| ≤ N(X ) ≤ |F|+ 1 + 2g(X )

√
|F|.

Hasse-Weil Bound =⇒ sufficiently many rational points if |F| is
sufficiently large compared to g(X ) (which depends on deg(f ))!
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Approach by the Hasse-Weil Bound

Given R(X ) ∈ F[X ], define g(X ,Y ) = R(X )−R(Y )
X−Y ∈ F[X ,Y ].

∃ (α, β) ∈ F× F such that α 6= β and g(α, β) = 0

=⇒ R(α) = R(β) such that α 6= β
=⇒ R(X ) is not a permutation.

Common Approach:

(i) g(X ,Y ) has an absolutely irreducible factor f (X ,Y ) over F.

(ii) X = Z(f ) is an absolutely irreducible curve over F.

(iii) UP: the number unwanted rational points (corresponding to
ones at infinity + singular + on X = Y )

(iv) |F| = pn is sufficiently large =⇒ N(X )− UP > 0

=⇒ ∃ a rational point P = (α, β) ∈ X with α 6= β

=⇒ ∃ (α, β) ∈ F× F such that α 6= β and g(α, β) = 0.
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Different Approach

Remark: We can not apply the common approach for

R(X ) = X k − γTr(X ) = X k − γ
(
X + X p + · · ·+ X pn−1

)
as deg(R(X )) = pn−1!

Another Approach: We separate the multiplicative and the
additive structure of the field to construct curves with many
(affine) rational points.

Theorem:

R(X ) is not a permutation of F if gcd(k, pn − 1) > 1.
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Idea of the proof:

Suppose that γ 6= 0.

Set t = gcd(k , pn − 1) > 1 and H = 〈ζt〉 6 F∗pn , where ζ is the
primitive element of Fpn .

Recall: We consider the solutions of 1
γX

k = Tr(X ) + c for
c ∈ Fpn .

We define fc(X ,Y ) = 1
γX

k − Tr(Y )− c and set Xc = Z(fc).

By Function Field Theory:

fc(X ,Y ) is absolutely irreducible over Fpn .

∃tpn−1 (affine) rational points of Xc for all η ∈
(

1
γH
)
∩ (c + Fp).⋃

c∈Fpn
(c + Fp) = Fpn =⇒ ∃c ∈ Fpn such that N(Xc) > pn.

Set X = Xc .
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Recall:
X = Z(fc), where fc(X ,Y ) = 1

γX
k − Tr(Y )− c

R(X ) = X k − γTr(X ) ∈ Fpn

Set L = { `d : Y = X + d | d ∈ Fpn }.

Remark:
⋃
`d∈L `d ⊇ Fpn × Fpn

We have |L| = pn and N(X ) > pn.

=⇒ ∃d ∈ Fpn such that X ∩ `d has at least two rational points,
say (α, α + d) and (β, β + d) with α 6= β.

=⇒ 1
γα

k − Tr(α + d)− c = 1
γβ

k − Tr(β + d)− c = 0.

=⇒ αk − γTr(α) = βk − γTr(β) = γc + γTr(d).

=⇒ R(α) = R(β) such that α 6= β.

�
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say (α, α + d) and (β, β + d) with α 6= β.

=⇒ 1
γα

k − Tr(α + d)− c = 1
γβ

k − Tr(β + d)− c = 0.

=⇒ αk − γTr(α) = βk − γTr(β) = γc + γTr(d).

=⇒ R(α) = R(β) such that α 6= β.
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Remark: We can generalize the result for any prime power!

Theorem:

Let q = pm and R(X ) = X k − γTrnm(X ) ∈ Fqn [X ], where

Trnm(X ) = X + X q + · · ·+ X qn−1
, m, n, k ∈ Z>0 and γ ∈ Fqn . If

gcd(k , qn − 1) > 1, then R(X ) is not a permutation of Fqn .

Corollary:

(i) Let q = 2m with m = 2s, s ≥ 1, and
R(X ) = X 3t − γTrnm(X ) ∈ Fqn [X ]. Then R(X ) is not a
permutation of Fqn for all n ≥ 1.

(ii) Let p be an odd prime, q = pm, m ≥ 1, and
R(X ) = X 2t − γTrnm(X ) ∈ Fqn [X ]. Then R(X ) is not a
permutation of Fqn for all n ≥ 1.
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Thanks for your attention!
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