Generalized Binomial APN Functions

Nikolay S. Kaleyski

University of Bergen

(joint work with Lilya Budaghyan and Tor Helleseth)

Background and Notation

- Vectorial Boolean Function, or (n, m)-function: $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$;
- substitution of sequences of *n* bits with sequences of *m* bits;
- core component of cryptographic algorithms;
- resistance to cryptanalysis depends on properties of the function;
- \bullet n=m;
- finite field interpretation: $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- unique representation as a univariate polynomial

$$F(x) = \sum_{i=0}^{2^n-1} \alpha_i x^i, \alpha_i \in \mathbb{F}_{2^n}.$$

Background and Notation (2)

- algebraic degree deg(F): maximum binary weight of exponent with non-zero coefficient in univariate representation;
- ... high algebraic degree ⇒ resistance to higher order differential attacks;
- differential uniformity Δ_F : largest number of solutions x to the equation

$$D_aF(x)=F(x)+F(a+x)=b$$

for $a, b \in \mathbb{F}_{2^n}$, $a \neq 0$;

- ...low differential uniformity \implies resistance to differential attacks;
- ... $\Delta_F \geq 2$ for any $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- ... when $\Delta_F = 2$, F is called almost perfect nonlinear (APN);
- other desirable properties: nonlinearity, boomerang uniformity, bijectivity, etc.

Background and Notation (3)

- the number of (n, n)-functions is huge, so they are classified with respect to equivalence relations which preserve the properties of interest;
- two (n, n)-functions F and G are EA-equivalent if $G = A_1 \circ F \circ A_2 + A$ where A_1, A_2, A are affine (n, n)-functions and A_1, A_2 are permutations;
- F and G are CCZ-equivalent if there is an affine permutation \mathcal{L} of $\mathbb{F}_{2^n}^2$ which maps the graph $G_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ of F to the graph G_G of G;
- EA-equivalence is a special case of CCZ-equivalence, and the latter is strictly more general;
- CCZ-equivalence preserves i.a. differential uniformity, so e.g. APN functions are classified up to CCZ-equivalence;
- deciding equivalence of two given functions is computationally difficult in general;
- can be resolved by the isomorphism of linear codes associated to the functions, which can take a long time for high dimensions;
- equivalence can sometimes be disproved by invariants: Walsh

Status quo of APN functions

- APN functions introduced by K. Nyberg in 1993¹;
- since then, there are six known infinite families of monomial APN functions²:

Family	Exponent	Conditions	$\deg(x^d)$
Gold	2^i+1	$\gcd(i,n)=1$	2
Kasami	$2^{2i}-2^i+1 \qquad \gcd(i,n)=1 i$		i+1
Welch	2^t+3	n=2t+1	3
Niho	$2^t+2^{t/2}-1, t$ even	n=2t+1	(t+2)/2
	$\left[2^{t} + 2^{(3t+1)/2} - 1, t ight.$ odd	n-2t+1	t+1
Inverse	$2^{2t}-1$	n=2t+1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n=5i	i+3

the table is conjectured complete.

¹Nyberg 1994.

²Beth and Ding 1994; Dobbertin 1999a,b, 2001; Gold 1968; Janwa and Wilson 1993; Kasami 1971; Nyberg 1994.

Status quo of APN functions (2)

• Eight infinite families of quadratic polynomials³:

_		
N°	Functions	Conditions
C1- C2	$x^{2^{s+1}} + u^{2^k-1}x^{2^{ik}+2^{mk+s}}$	$n=pk, \gcd(k,3)=\gcd(s,3k)=1, p\in\{3,4\}, i=sk \bmod p, m=p-i, n\geq 12, u \text{ primitive in } \mathbb{F}_{2^v}^s$
СЗ	$sx^{q+1} + x^{2^{i}+1} + x^{q(2^{i}+1)} + cx^{2^{i}q+1} + c^{q}x^{2^{i}+q}$	$q=2^m, n=2m, gcd(i,m)=1, \ c\in \mathbb{F}_{2^n}, s\in \mathbb{F}_{2^n}\setminus \mathbb{F}_q, X^{2^i+1}+cX^{2^i}+c^gX+1 \ \text{has no solution} \ x \text{ s.t.}$ $x^{p+1}=1$
C4	$x^3 + a^{-1} Tr_n(a^3 x^9)$	$a \neq 0$
C5	$x^3 + a^{-1} \operatorname{Tr}_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n,a \neq 0$
C6	$x^3 + a^{-1} \operatorname{Tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n,a \neq 0$
C7-	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + vx^{2^{-k}+1} + vw^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$n = 3k$, $gcd(k, 3) = gcd(s, 3k) = 1$, $v, w \in \mathbb{F}_{2k}$, $vw \neq 1$, $3 (k + s)$, u primitive in $\mathbb{F}_{2^n}^s$
C9	$ux^{-} + u^{-}x^{-} + vx^{-} + wu^{-}x^{-}$	n = on, gca(n, o) = gca(s, on) = 1, o, w ∈ 1, o, w ≠ 1, o, (n + s), a primerve in 1, o
C10	$(x + x^{2^m})^{2^k+1} + u'(ux + u^{2^m}x^{2^m})^{(2^k+1)2^i} + u(x + x^{2^m})(ux + u^{2^m}x^{2^m})$	$n=2m, m\geqslant 2$ even, $\gcd(k,m)=1$ and $i\geqslant 2$ even, u primitive in $\mathbb{F}_{2^n}^*, u'\in \mathbb{F}_{2^n}$ not a cube
C11	$a^2x^{2^{2n+1}+1} + b^2x^{2^{n+1}+1} + ax^{2^{2n}+2} + bx^{2^{n}+2} + (c^2+c)x^3$	$n=3m, m ext{ odd}, L(x)=ax^{2^{2m}}+bx^{2^m}+cx$ satisfies the conditions in Lemma 8 of [7]

- 470, resp. 8157 new quadratic APN functions found over \mathbb{F}_{2^7} , resp. \mathbb{F}_{2^8} using matrix methods⁴;
- sporadic APN binomial over $\mathbb{F}_{2^{10}}^5$: first example of an APN function CCZ-inequivalent to a power function, conjectured by Bierbrauer not to belong to any infinite family.

 $^{^3\}text{Bracken}$ et al. 2011; Budaghyan, Calderini, et al. 2018; Budaghyan and Carlet 2008; Budaghyan, Carlet, and Leander 2008, 2009a,b; Zhou and Pott 2013.

⁴Yu, Wang, and Li 2014.

⁵Edel, Kyureghyan, and Pott 2006.

Expanding $x^3 + \beta \cdot x^{36}$

- the binomial $B(x) = x^3 + \beta \cdot x^{36}$ over $\mathbb{F}_{2^{10}}$, where β is the primitive element of \mathbb{F}_{2^2} ;
- compare with $x^3 + w \cdot x^{258}$ over $\mathbb{F}_{2^{12}}$ which was extended into *two* infinite families;
- we attempt to "expand" it to another APN function by adding terms;
- B(x) cannot be expanded to an APN trinomial;
- we do find quadrinomials containing B(x) which are APN, for example:
 - $x^3 + \beta \cdot x^{36} + \beta^2 \cdot x^{96} + x^{129}$;
 - $x^3 + \beta \cdot x^{36} + x^{96} + x^{129}$;
 - $x^3 + \beta \cdot x^{36} + \beta \cdot x^{80} + x^{520}$;
 - etc.
- remaining quadrinomials equivalent to B(x) (allowing us to represent B(x) as a quadrinomial) or to one of the quadrinomials above;
- above quadrinomials inequivalent as witnessed by Γ-rank.

Expanding $x^3 + \beta \cdot x^{36}$ (2)

- the general form is $C(x) = x^3 + \beta \cdot x^{2^i+1} + \beta^2 \cdot (x^3)^{2^k} + (x^{2^i+1})^{2^k}$;
- $0 \le i, k \le n 1$;
- the APN-ness of C is characterized by a system of two equations in two variables a, x;
- depending on the parity of k, we get two different systems of equations;
- *C* is APN if the associated system has only $x \in \mathbb{F}_2$ as solutions for any $a \neq 0$;
- it remains to select a value of i for which the system has no solutions.

Expanding $x^3 + \beta \cdot x^{36}$ (3)

- if i = m 2 = n/2 2, then the even system only has trivial solutions;
- for example, $C(x) = x^3 + \beta \cdot x^{36} + \beta^2 \cdot x^{96} + x^{129}$ has i = 3 = 10/2 2 and k = 4
- proof by contradiction: the equalities together imply that β is a cube, which cannot be true unless $3 \nmid m$;
- for n=10, C(x) has Γ -rank 166068, which is distinct from that of $x^3, x^9, x^3 + \text{Tr}(x^9)$ and $x^3 + \alpha^{-1} \cdot \text{Tr}(\alpha^3 \cdot x^9)$;
- Γ-ranks of representatives from other families are being computed;
- note that C(x) cannot be CCZ-equivalent to x^{57} (Kasami) or x^{339} (Dobbertin);
- C(x) is inequivalent to any known family according to Magma via code isomorphism.

Expanding $x^3 + \beta \cdot x^{36}$ (4)

- for i = m + 2 = n/2 + 2, the odd system only has trivial solutions, and the odd and even functions are equivalent;
- functions for i = m 2 and different even k, resp. i = m + 2 and different odd k are equivalent;
- empirically, if $i = (m-2)^{-1} \mod n$, resp. $i = (m+2)^{-1} \mod n$ for k even, resp. k odd, then the system also has only trivial solutions;
- these "inverse" functions are equivalent between themselves, but inequivalent to the previous ones (or to any other known APN function).

Further observations

- both $x^3 + \beta \cdot x^{36} + \beta^2 \cdot x^{96} + x^{129}$ and $x^3 + \beta \cdot x^{36} + x^{96} + x^{129}$ are 3-to-1 functions on $\mathbb{F}_{2^{10}}^*$;
- $x^3 + \beta \cdot x^{36} + \beta \cdot x^{80} + x^{520}$ is not, and has a different structure that does not appear to be easily generalizable;
- the quadrinomial can be seen as the sum of a composition of power functions with binomials, i.e. for $L_1(x) = x + \beta^2 \cdot x^{2^{n/2}}$ and $L_2(x) = x + \beta \cdot x^{2^{n/2}}$, we can write

$$C(x) = L_1(x^3) + \beta \cdot L_2(x^9) = L_1(x^3) + L_2(x^{9 \cdot 2^{n/2}})$$

or, in general,

$$C(x) = L_1(x^3) + \beta \cdot L_2(x^{2^{m-2}+1}) = L_1(x^3) + L_2(x^{(2^{m-2}+1)\cdot 2^{n/2}}).$$

• functions of the form $L_1(x^3) + L_2(x^9)$ have previously been studied for APN-ness by Budaghyan, Carlet and Leander; C(x) is the first known case where $L_1(x) + L_2(x^3)$ is not a permutation.

Future work

- Prove APN-ness of C(x) for the cases when $i = (m-2)^{-1}$ and $i = (m+2)^{-1}$;
- extended the other quadrinomials over $\mathbb{F}_{2^{10}}$ to APN families;
- find a more general form of the polynomials;
- find a general form of the construction;
- investigate invariants and other properties of the polynomials families.

- Beth, Thomas and Cunsheng Ding (1994). "On Almost Perfect Nonlinear Permutations". In: EUROCRYPT '93 Workshop on the theory and application of cryptographic techniques on Advances in cryptology, pp. 65–76.
- Bracken, Carl et al. (2011). "A Few More Quadratic APN Functions". In: *Cryptography and Communications* 3.1, pp. 43–53.
- Budaghyan, Lilya, Marco Calderini, et al. (2018). "On Isotopic Construction of APN Functions". In: Sequences and their Applications (SETA) 2018.
- Budaghyan, Lilya and Claude Carlet (2008). "Classes of Quadratic APN Trinomials and Hexanomials and Related Structures". In: *IEEE Transactions on Information Theory* 54.5, pp. 2354–2357.
- Budaghyan, Lilya, Claude Carlet, and Gregor Leander (2008). "Two Classes of Quadratic APN Binomials Inequivalent to Power Functions". In: *IEEE Transactions on Information Theory* 54.9, pp. 4218–4229.
- (2009a). "Constructing New APN Functions from Known Ones". In: Finite Fields and Their Applications 15.2, pp. 150–159.

Budaghyan, Lilya, Claude Carlet, and Gregor Leander (2009b). "On a Construction of Quadratic APN Functions". In: 2009 IEEE Information Theory Workshop, pp. 374–378.

Dobbertin, Hans (1999a). "Almost Perfect Nonlinear Power Functions on $GF(2^n)$: the Niho case". In: Information & Computation 151.1, pp. 57–72.

 $\overline{}$ – (1999b). "Almost Perfect Nonlinear Power Functions on $GF(2^n)$: the Welch case". In: IEEE Transactions on Information Theory 45.4, pp. 1271-1275.

= – (2001). "Almost Perfect Nonlinear Power Functions on $GF(2^n)$: A New Case for *n* Divisible by 5". In: *International Conference on Finite* Fields and Applications, pp. 113–121.

Edel, Yves, Gohar Kyureghyan, and Alexander Pott (2006). "A new APN function which is not equivalent to a power mapping". In: IEEE Transactions on Information Theory 52.2, pp. 744–747.

Gold, Robert (1968). "Maximal Recursive Sequences with 3-valued Recursive Cross-correlation Functions (Corresp.)" In: IEEE Transactions on Information Theory 14.1, pp. 154–156.

- Janwa, Heeralal and Richard M Wilson (1993). "Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes". In: International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. Springer, pp. 180–194.
- Kasami, Tadao (1971). "The Weight Enumerators for Several Classes of Subcodes of the 2nd Order Binary Reed-Muller Codes". In: Information & Computation 18.4, pp. 369–394.
- Nyberg, K. (1994). "Differentially Uniform Mappings for Cryptography". In: Lecture Notes in Computer Science 765, pp. 55–64.
- Yu, Yuyin, Mingsheng Wang, and Yongqiang Li (2014). "A matrix approach for constructing quadratic APN functions". In: *Designs, codes and cryptography* 73.2, pp. 587–600.
- Zhou, Yue and Alexander Pott (2013). "A new family of semifields with 2 parameters". In: Advances in Mathematics 234, pp. 43–60.