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Background and Notation

Vectorial Boolean Function, or (n,m)-function: F : Fn
2 → Fm

2 ;
substitution of sequences of n bits with sequences of m bits;
core component of cryptographic algorithms;
resistance to cryptanalysis depends on properties of the function;
n = m;
finite field interpretation: F : F2n → F2n ;
unique representation as a univariate polynomial

F (x) =
2n−1∑
i=0

αi x i , αi ∈ F2n .
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Background and Notation (2)

algebraic degree deg(F ): maximum binary weight of exponent with
non-zero coefficient in univariate representation;
. . . high algebraic degree =⇒ resistance to higher order differential
attacks;
differential uniformity ∆F : largest number of solutions x to the
equation

DaF (x) = F (x) + F (a + x) = b

for a, b ∈ F2n , a 6= 0;
. . . low differential uniformity =⇒ resistance to differential attacks;
. . . ∆F ≥ 2 for any F : F2n → F2n ;
. . . when ∆F = 2, F is called almost perfect nonlinear (APN);
other desirable properties: nonlinearity, boomerang uniformity,
bijectivity, etc.
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Background and Notation (3)
the number of (n, n)-functions is huge, so they are classified with
respect to equivalence relations which preserve the properties of
interest;
two (n, n)-functions F and G are EA-equivalent if
G = A1 ◦ F ◦ A2 + A where A1,A2,A are affine (n, n)-functions and
A1,A2 are permutations;
F and G are CCZ-equivalent if there is an affine permutation L of
F2

2n which maps the graph GF = {(x ,F (x)) : x ∈ F2n} of F to the
graph GG of G ;
EA-equivalence is a special case of CCZ-equivalence, and the latter
is strictly more general;
CCZ-equivalence preserves i.a. differential uniformity, so e.g. APN
functions are classified up to CCZ-equivalence;
deciding equivalence of two given functions is computationally
difficult in general;
can be resolved by the isomorphism of linear codes associated to the
functions, which can take a long time for high dimensions;
equivalence can sometimes be disproved by invariants: Walsh
spectrum, Γ-rank, ∆-rank, etc.Nikolay S. Kaleyski Generalized Binomial APN Functions
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Status quo of APN functions

APN functions introduced by K. Nyberg in 19931;
since then, there are six known infinite families of monomial APN
functions2:

the table is conjectured complete.
1Nyberg 1994.
2Beth and Ding 1994; Dobbertin 1999a,b, 2001; Gold 1968; Janwa and Wilson

1993; Kasami 1971; Nyberg 1994.
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Status quo of APN functions (2)

Eight infinite families of quadratic polynomials3:

470, resp. 8157 new quadratic APN functions found over F27 , resp.
F28 using matrix methods4;
sporadic APN binomial over F210 5: first example of an APN function
CCZ-inequivalent to a power function, conjectured by Bierbrauer not
to belong to any infinite family.

3Bracken et al. 2011; Budaghyan, Calderini, et al. 2018; Budaghyan and Carlet
2008; Budaghyan, Carlet, and Leander 2008, 2009a,b; Zhou and Pott 2013.

4Yu, Wang, and Li 2014.
5Edel, Kyureghyan, and Pott 2006.
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Expanding x 3 + β · x 36

the binomial B(x) = x3 + β · x36 over F210 , where β is the primitive
element of F22 ;
compare with x3 + w · x258 over F212 which was extended into two
infinite families;
we attempt to “expand” it to another APN function by adding
terms;
B(x) cannot be expanded to an APN trinomial;
we do find quadrinomials containing B(x) which are APN, for
example:

x3 + β · x36 + β2 · x96 + x129;
x3 + β · x36 + x96 + x129;
x3 + β · x36 + β · x80 + x520;
etc.

remaining quadrinomials equivalent to B(x) (allowing us to represent
B(x) as a quadrinomial) or to one of the quadrinomials above;
above quadrinomials inequivalent as witnessed by Γ-rank.
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Expanding x 3 + β · x 36 (2)

the general form is C(x) = x3 + β · x2i +1 + β2 · (x3)2k + (x2i +1)2k ;
0 ≤ i , k ≤ n − 1;
the APN-ness of C is characterized by a system of two equations in
two variables a, x ;
depending on the parity of k, we get two different systems of
equations;
C is APN if the associated system has only x ∈ F2 as solutions for
any a 6= 0;
it remains to select a value of i for which the system has no
solutions.
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Expanding x 3 + β · x 36 (3)

if i = m − 2 = n/2− 2, then the even system only has trivial
solutions;
for example, C(x) = x3 + β · x36 + β2 · x96 + x129 has
i = 3 = 10/2− 2 and k = 4
proof by contradiction: the equalities together imply that β is a
cube, which cannot be true unless 3 - m;
for n = 10, C(x) has Γ-rank 166068, which is distinct from that of
x3, x9, x3 + Tr(x9) and x3 + α−1 · Tr(α3 · x9);
Γ-ranks of representatives from other families are being computed;
note that C(x) cannot be CCZ-equivalent to x57 (Kasami) or x339

(Dobbertin);
C(x) is inequivalent to any known family according to Magma via
code isomorphism.
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Expanding x 3 + β · x 36 (4)

for i = m + 2 = n/2 + 2, the odd system only has trivial solutions,
and the odd and even functions are equivalent;
functions for i = m − 2 and different even k, resp. i = m + 2 and
different odd k are equivalent;
empirically, if i = (m− 2)−1 mod n, resp. i = (m + 2)−1 mod n for
k even, resp. k odd, then the system also has only trivial solutions;
these “inverse” functions are equivalent between themselves, but
inequivalent to the previous ones (or to any other known APN
function).
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Further observations

both x3 + β · x36 + β2 · x96 + x129 and x3 + β · x36 + x96 + x129 are
3-to-1 functions on F∗

210 ;
x3 + β · x36 + β · x80 + x520 is not, and has a different structure that
does not appear to be easily generalizable;
the quadrinomial can be seen as the sum of a composition of power
functions with binomials, i.e. for L1(x) = x + β2 · x2n/2 and
L2(x) = x + β · x2n/2 , we can write

C(x) = L1(x3) + β · L2(x9) = L1(x3) + L2(x9·2n/2
)

or, in general,

C(x) = L1(x3) + β · L2(x2m−2+1) = L1(x3) + L2(x (2m−2+1)·2n/2
).

functions of the form L1(x3) + L2(x9) have previously been studied
for APN-ness by Budaghyan, Carlet and Leander; C(x) is the first
known case where L1(x) + L2(x3) is not a permutation.
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Future work

Prove APN-ness of C(x) for the cases when i = (m − 2)−1 and
i = (m + 2)−1;
extended the other quadrinomials over F210 to APN families;
find a more general form of the polynomials;
find a general form of the construction;
investigate invariants and other properties of the polynomials
families.
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