On a relationship between Gold and Kasami functions and other power APN functions

Nikolay S. Kaleyski

University of Bergen

(joint work with Lilya Budaghyan, Marco Calderini and Claude Carlet

- Vectorial Boolean Function, or (n, m)-function: $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$;
- substitution of sequences of *n* bits with sequences of *m* bits;
- core component of cryptographic algorithms;
- resistance to cryptanalysis depends on properties of the function;
- *n* = *m*;
- finite field interpretation: $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- unique representation as a univariate polynomial

$$F(x) = \sum_{i=0}^{2^n-1} \alpha_i x^i, \alpha_i \in \mathbb{F}_{2^n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Background and Notation (2)

- algebraic degree deg(F): maximum binary weight of exponent with non-zero coefficient in univariate representation;
- ... high algebraic degree ⇒ resistance to higher order differential attacks;
- differential uniformity Δ_F : largest number of solutions x to the equation

$$D_aF(x)=F(x)+F(a+x)=b$$

for $a, b \in \mathbb{F}_{2^n}$, $a \neq 0$;

- ... low differential uniformity \implies resistance to *differential attacks*;
- $\ldots \Delta_F \geq 2$ for any $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$;
- ... when $\Delta_F = 2$, F is called *almost perfect nonlinear (APN)*;
- other desirable properties: nonlinearity, boomerang uniformity, bijectivity, etc.

Background and Notation (3)

- the number of (*n*, *n*)-functions is huge, so they are classified with respect to equivalence relations which preserve the properties of interest;
- two (n, n)-functions F and G are EA-equivalent if $G = A_1 \circ F \circ A_2 + A$ where A_1, A_2, A are affine (n, n)-functions and A_1, A_2 are permutations;
- *F* and *G* are *CCZ*-equivalent if there is an affine permutation \mathcal{L} of $\mathbb{F}_{2^n}^2$ which maps the graph $G_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ of *F* to the graph G_G of *G*;
- EA-equivalence is a special case of CCZ-equivalence, and the latter is strictly more general;
- CCZ-equivalence preserves i.a. differential uniformity, so e.g. APN functions are classified up to CCZ-equivalence;
- deciding equivalence of two given functions is computationally difficult in general;
- can be resolved by the isomorphism of linear codes associated to the functions, which can take a long time for high dimensions;
- equivalence can sometimes be disproved by invariants: Walsh spectrum, Γ-rank, Δ-rank, etc.

- denote by $P_i(x)$ the power function x^i over \mathbb{F}_{2^n} ;
- consider the composition $P_i \circ L \circ P_j$ for some linear (n, n)-function L;
- we look for i, j, L for which $P_i \circ L \circ P_j$ is APN;
- exclude trivial cases when L is a linear monomial;
- at first consider L with coefficients in \mathbb{F}_2 and only take one i, j from each cyclotomic coset;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

• exhaustive search for $4 \le n \le 9$.

Observations in the odd case

Proposition

For an odd $n = 3s \pm r, 3s \ge r$ and gcd(3s, r) = 1, and for $L_i^{\mu}(x) = \mu x^{2^i} + x$, we have

$$G_{s} \circ L_{2s}^{\mu} \circ G_{r}^{-1}(x) = \begin{cases} A^{\mu} \circ K_{s}^{-1}(x^{2^{3s}}) + \mu^{2^{s}} x^{2^{3s}} & n = 3s + r \\ A^{\mu} \circ K_{s}^{-1}(x) + \mu^{2^{s}} x^{2^{s}} & n = 3s + r, \end{cases}$$

where $A^{\mu}(x) = \mu^{2^{s}+1}x^{2^{2s}} + \mu x^{2^{s}} + x$, $\mu \in \mathbb{F}_{2^{n}}$, G_{i} is the Gold function $G_{i}(x) = x^{2^{i}+1}$, G_{i}^{-1} is its compositional inverse, and $K_{s}^{-1}(x) = x^{(2^{s}+1)/(2^{3s}+1)}$ is the inverse of the Kasami function $K_{s}(x) = x^{(2^{3s}+1)/(2^{s}+1)}$.

- in other words, (the inverse of) a Kasami power function can be obtained by composing two Gold functions with a linear polynomial;
- experimental data reveals similar patterns in the odd case;
- similar proposition for $G_s \circ L_{n-2s}^{\mu} \circ G_r^{-1}(x)$, which also gives the inverse of a Kasami function.

Proposition

Let n = 2m + 1 for an arbitrary natural m. Denoting again $L_i^{\mu}(x) = \mu x^{2^i} + x$, we have for any $1 \le i \le n - 1$

$$\mathcal{G}_i\circ L^\mu_{2i}\circ \mathcal{G}_i^{-1}(x)=\mathcal{A}_i^\mu(x)+\mu^{2^i}\mathcal{K}_i(x),$$

where $A_i^{\mu}(x) = \mu^{2^s+1}x^{2^{2s}} + \mu x^{2^s} + x$ is as before.

- in this case, the parameter *i* of the Gold function does not depend on the dimension *n*;
- a similar proposition can be given for G_i L^μ_{n-2i} G⁻¹_i(x), which once again leads to a Kasami power function.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ─ 臣 ─ のへで

Observations in the odd case (3)

• let
$$n = 2t + 1$$
;
• for $L = x^{2^{t}} + x$, we have
 $(G_{t}^{-1} \circ L \circ G_{t})(x) = (x^{2^{t}+1} + x^{2^{2t}+2^{t}})^{2^{t+1} \cdot (2^{t+1}-1)}$;
• for $L = x^{2^{t+1}} + x$, we have also
 $(G_{t}^{-1} \circ L \circ G_{t})(x) = (x^{2^{t}+1} + x^{2^{2t+1}+2^{t+1}})^{2^{t+1} \cdot (2^{t+1}-1)}$;
• similarly, for $L = x^{2} + x$ and $I(x) = x^{2^{2t}-1}$, we have
 $(I \circ L \circ I)(x) = (x^{2^{2t}-1} + x^{2^{2t+1}-2})^{2^{2t}-1}$;
• for $L = x^{2^{2t}} + x$, we have
 $(I \circ L \circ I)(x) = (x^{2^{2t}-1} + x^{2^{4t}-2^{2t}})^{2^{2t}-1}$;

• this exhausts the observed cases for odd dimension.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

• let n = 2m with $3 \nmid m$;

• let
$$I_n = \frac{2^{n-1}+1}{3}$$
, $L(x) = x^{2^{n-2}} + x^{2^{n-4}} + x$ and $1 \le i \le 2^n - 2$;

then we have

$$P_i \circ L \circ P_{l_n}(x) = P_i \circ L_1 \circ L_2(x)$$

where $L_1(x) = x + x^4 + x^{16}$ and $L_2(x) = x^{2^{n-5}}$ are linear permutations;

- similar results for $L(x) = x^{2^{n-2}} + x^4 + x$ when $3 \nmid m$, $L(x) = x^{2^{n-4}} + x^{2^{n-6}} + x$ when $7 \nmid m$;
- the divisibility assumption guarantees that L_1 and L_2 are permutations;
- these observations exhaust all observed cases for even dimension;
- allowing L to have coefficients in \mathbb{F}_{2^2} still gives the same cases.

- consider a larger set of linear polynomials L;
- apply the construction to functions with a more complicated structure;
- use the "decomposition" of power functions as a proof technique.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ─ 臣 ─ のへで