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Background and Notation

Vectorial Boolean Function, or (n,m)-function: F : Fn
2 → Fm

2 ;
substitution of sequences of n bits with sequences of m bits;
core component of cryptographic algorithms;
resistance to cryptanalysis depends on properties of the function;
n = m;
finite field interpretation: F : F2n → F2n ;
unique representation as a univariate polynomial

F (x) =
2n−1∑
i=0

αi x i , αi ∈ F2n .
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Background and Notation (2)

algebraic degree deg(F ): maximum binary weight of exponent with
non-zero coefficient in univariate representation;
. . . high algebraic degree =⇒ resistance to higher order differential
attacks;
differential uniformity ∆F : largest number of solutions x to the
equation

DaF (x) = F (x) + F (a + x) = b

for a, b ∈ F2n , a 6= 0;
. . . low differential uniformity =⇒ resistance to differential attacks;
. . . ∆F ≥ 2 for any F : F2n → F2n ;
. . . when ∆F = 2, F is called almost perfect nonlinear (APN);
other desirable properties: nonlinearity, boomerang uniformity,
bijectivity, etc.
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Background and Notation (3)
the number of (n, n)-functions is huge, so they are classified with
respect to equivalence relations which preserve the properties of
interest;
two (n, n)-functions F and G are EA-equivalent if
G = A1 ◦ F ◦ A2 + A where A1,A2,A are affine (n, n)-functions and
A1,A2 are permutations;
F and G are CCZ-equivalent if there is an affine permutation L of
F2

2n which maps the graph GF = {(x ,F (x)) : x ∈ F2n} of F to the
graph GG of G ;
EA-equivalence is a special case of CCZ-equivalence, and the latter
is strictly more general;
CCZ-equivalence preserves i.a. differential uniformity, so e.g. APN
functions are classified up to CCZ-equivalence;
deciding equivalence of two given functions is computationally
difficult in general;
can be resolved by the isomorphism of linear codes associated to the
functions, which can take a long time for high dimensions;
equivalence can sometimes be disproved by invariants: Walsh
spectrum, Γ-rank, ∆-rank, etc.
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Composing power functions with a linear polynomial

denote by Pi (x) the power function x i over F2n ;
consider the composition Pi ◦ L ◦Pj for some linear (n, n)-function L;
we look for i , j , L for which Pi ◦ L ◦ Pj is APN;
exclude trivial cases when L is a linear monomial;
at first consider L with coefficients in F2 and only take one i , j from
each cyclotomic coset;
exhaustive search for 4 ≤ n ≤ 9.
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Observations in the odd case

Proposition
For an odd n = 3s ± r , 3s ≥ r and gcd(3s, r) = 1, and for
Lµi (x) = µx2i + x, we have

Gs ◦ Lµ2s ◦ G−1
r (x) =

{
Aµ ◦ K −1

s (x23s ) + µ2s x23s n = 3s + r
Aµ ◦ K −1

s (x) + µ2s x2s n = 3s + r ,

where Aµ(x) = µ2s +1x22s + µx2s + x, µ ∈ F2n , Gi is the Gold function
Gi (x) = x2i +1, G−1

i is its compositional inverse, and
K −1

s (x) = x (2s +1)/(23s +1) is the inverse of the Kasami function
Ks(x) = x (23s +1)/(2s +1).

in other words, (the inverse of) a Kasami power function can be
obtained by composing two Gold functions with a linear polynomial;
experimental data reveals similar patterns in the odd case;
similar proposition for Gs ◦ Lµn−2s ◦ G−1

r (x), which also gives the
inverse of a Kasami function.
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Observations in the odd case (2)

Proposition
Let n = 2m + 1 for an arbitrary natural m. Denoting again
Lµi (x) = µx2i + x, we have for any 1 ≤ i ≤ n − 1

Gi ◦ Lµ2i ◦ G−1
i (x) = Aµi (x) + µ2i

Ki (x),

where Aµi (x) = µ2s +1x22s + µx2s + x is as before.

in this case, the parameter i of the Gold function does not depend
on the dimension n;
a similar proposition can be given for Gi ◦ Lµn−2i ◦ G−1

i (x), which
once again leads to a Kasami power function.
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Observations in the odd case (3)

let n = 2t + 1;
for L = x2t + x , we have

(G−1
t ◦ L ◦ Gt)(x) = (x2t +1 + x22t +2t

)2t+1·(2t+1−1);

for L = x2t+1 + x , we have also

(G−1
t ◦ L ◦ Gt)(x) = (x2t +1 + x22t+1+2t+1

)2t+1·(2t+1−1);

similarly, for L = x2 + x and I(x) = x22t −1, we have

(I ◦ L ◦ I)(x) = (x22t −1 + x22t+1−2)22t −1;

for L = x22t + x , we have

(I ◦ L ◦ I)(x) = (x22t −1 + x24t −22t
)22t −1;

this exhausts the observed cases for odd dimension.
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Observations in the even case

let n = 2m with 3 - m;
let ln = 2n−1+1

3 , L(x) = x2n−2 + x2n−4 + x and 1 ≤ i ≤ 2n − 2;
then we have

Pi ◦ L ◦ Pln (x) = Pi ◦ L1 ◦ L2(x)

where L1(x) = x + x4 + x16 and L2(x) = x2n−5 are linear
permutations;
similar results for L(x) = x2n−2 + x4 + x when 3 - m,
L(x) = x2n−4 + x2n−6 + x when 7 - m;
the divisibility assumption guarantees that L1 and L2 are
permutations;
these observations exhaust all observed cases for even dimension;
allowing L to have coefficients in F22 still gives the same cases.
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Future work

consider a larger set of linear polynomials L;
apply the construction to functions with a more complicated
structure;
use the “decomposition” of power functions as a proof technique.
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