# **Constructions of linear codes from cryptographic**

# functions over finite fields

# Nian Li

Faculty of Mathematics and Statistics

Hubei University

Wuhan, 430062, China

The fourth International Workshop on Boolean Functions and their Applications (BFA) Florence, Italy

### Outline

**Basic Concepts and Notations** 

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

### Outline

#### Basic Concepts and Notations

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

### **Linear Codes**

Let  $\mathbb{F}_{p^m}$  denote the finite field with  $p^m$  elements, where p is a prime and m is a positive integer.

- Linear code: An [n,k,d] linear code over 𝔽<sub>p</sub> is a k-dimensional subspace of 𝔽<sup>n</sup><sub>p</sub> with minimum distance d.
- ▶ Optimal(resp. almost optimal) code: An [n,k,d] code is called optimal(resp. almost optimal) if its parameters n, k and d (resp. d+1)meet a bound on linear codes.
- ▶ Weight distribution: The sequence (1,A<sub>1</sub>,A<sub>2</sub>,...,A<sub>n</sub>) is called the weight distribution of C, where A<sub>i</sub> is the number of codewords with Hamming weight i in a code C of length n.
- ▶ *t*-weight code: A code *C* is said to be *t*-weight if the number of nonzero  $A_i$  in  $(1, A_1, A_2, \dots, A_n)$  is equal to *t*.

### **Linear Codes**

Linear codes with good parameters can be employed in data storage systems and communication systems.

Weight distribution of a code

- allows the computation of the error probability of error detection and correction with respect to some error detection and error correction algorithms [T. Kløve, 2007].
- gives the minimum distance and the error correcting capability of a linear code *C*.

#### Main Research Problems:

- **1** Find new linear codes with good parameters [n, k, d];
- **2** Determine the weight distribution for a code *C*.

### **Applications of Linear Codes**

(1) Applications of linear codes:

- communication systems;
- consumer electronics;
- data storage systems;
- • •

(2) Applications of *t*-weight linear codes:

- secret sharing;
- authentication codes;
- association schemes;
- strongly regular graphs;
  - • •

#### **Cryptographic Functions**

Let F(x) be a function from  $\mathbb{F}_{p^n}$  to  $\mathbb{F}_{p^m}$  and f(x) be a function from  $\mathbb{F}_{p^m}$  to  $\mathbb{F}_p$ . The differential uniformity of F(x) is defined by

$$\delta_F = \max_{a \in \mathbb{F}_{p^n}^n, b \in \mathbb{F}_{p^m}} \#\{x \in \mathbb{F}_{p^n} : F(x+a) - F(x) = b\}$$

and the Walsh transforms of f(x) and F(x) are defined by

$$egin{array}{rll} W_f(a)&=&\sum_{x\in \mathbb{F}_{p^m}}\zeta_p^{f(x)-\mathrm{Tr}_1^m(ax)}, \ W_F(a,b)&=&\sum_{x\in \mathbb{F}_{p^n}}\zeta_p^{\mathrm{Tr}_1^m(bF(x))-\mathrm{Tr}_1^n(ax)}, \end{array}$$

respectively, where  $\zeta_p$  is a *p*-th primitive root of unity.

### **Cryptographic Functions**

Let f(x) and F(x) be defined as above:

- *F* is perfect nonlinear (PN):  $\delta_F = 1$ .
- *F* is almost perfect nonlinear (APN):  $\delta_F = 2$ .
- f is bent:  $|W_f(a)| = p^{m/2}$  for all  $a \in \mathbb{F}_{p^m}$ .
- ▶ *F* is vectorial bent:  $|W_f(a)| = 2^{n/2}$ ,  $a \in \mathbb{F}_{2^n}$  and  $b \in \mathbb{F}_{2^m}^*$ .
- f is weakly regular bent:  $W_f(\lambda) = \varepsilon \sqrt{p^*} \zeta_p^{f^*(\lambda)}$ ,  $\varepsilon = \pm 1$ .
- ▶ *F* is almost bent (AB):  $W_F(a,b) \in \{0,\pm 2^{\frac{n+1}{2}}\}$ ,  $a \in \mathbb{F}_{2^n}$ ,  $b \in \mathbb{F}_{2^n}^*$ .
- ▶ *f* is a plateaued:  $W_f(a) \in \{0, \pm \mu\}$  for all  $a \in \mathbb{F}_{p^n}$ .
- F is plateaued: each  $\operatorname{Tr}_1^m(bF(x))$ ,  $b \neq 0$ , is plateaued.

▶ f is weakly regular s-plateaued:  $W_f(a) \in \{0, up^{\frac{m+s}{2}} \zeta_p^{g(a)}\}, |u|=1.$ 

### Outline

**Basic Concepts and Notations** 

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

The first generic construction of linear codes from cryptographic functions is given as follows:

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_1^m(aF(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

where F(x) is a mapping from  $\mathbb{F}_{p^m}$  to  $\mathbb{F}_{p^m}$  and  $\operatorname{Tr}_1^m(\cdot)$  is the trace function from  $\mathbb{F}_{p^m}$  to  $\mathbb{F}_p$ .

#### Research Problem:

- Select F(x) such that  $C_F$  has good parameters.
- Determine the weight distribution of  $C_F$ .

The dual code  $C_F^{\perp}$  of  $C_F$  is the code with parity check matrix

$$\left(\begin{array}{cccc} 1 & \alpha & \alpha^2 & \dots & \alpha^{p^m-2} \\ F(1) & F(\alpha) & F(\alpha^2) & \dots & F(\alpha^{p^m-2}) \end{array}\right)$$

Theorem (Carlet, Charpin, Zinoviev, 1998) Let d be the minimal distance and  $\Omega = \{j: A_i \neq 0, 1 \leq j \leq p^m - 1\}$  be the characteristic set of  $C_F^{\perp}$ , where  $(1, A_1, \dots, A_{p^m-1})$  is the weight distribution of  $C_F$ . If p = 2, then

- (1)  $C_F^{\perp}$  is such that  $3 \le d \le 5$ ;
- (2) F(x) is APN if and only if d = 5;
- (3) F(x) is AB if and only if  $\Omega$  looks as  $\{2^{m-1}, 2^{m-1} \pm 2^{(m-1)/2}\}$ .

$$C_F = \left\{ \mathbf{c}(a,b) = (\operatorname{Tr}_h^m(aF(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$
  
$$\overline{C}_F = \left\{ \mathbf{c}(a,b) = (\operatorname{Tr}_h^m(aF(x) + bx + c)_{x \in \mathbb{F}_{p^m}^*} : a, b, c \in \mathbb{F}_{p^m} \right\}$$

Theorem (Carlet, Ding, Yuan, 2005) If F(x) is PN with F(0) = 0, then  $C_F$  (resp.  $\overline{C}_F$ ) has parameters  $[p^m - 1, 2m/h, d; p^h]$  (resp.  $[p^m - 1, 1 + 2m/h, d; p^h]$ ) with

$$d \ge \frac{p^h - 1}{p^h} (p^m - p^{m/2}).$$

#### Remarks:

- ▶ The dual codes of *C<sub>F</sub>* and *C<sub>F</sub>* had also been investigated;
- Special cases: such as h = 1 or F(x) is a power function;
- Many optimal or best known codes were obtained.

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_h^m(aF(x)) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

The weight distribution of  $C_F$  for h = 1 was determined when F(x) is a PN function of the form:

(1) 
$$F(x) = x^{p^{k+1}}$$
 (Yuan, Carlet, Ding, 2006);  
(2)  $F(x) = x^{10} - ux^6 - u^2x^2$  (Yuan, Carlet, Ding, 2006);  
(3)  $F(x) = x^{(3^{k+1})/2}$ , *m* odd (Yuan, Carlet, Ding, 2006);  
(4)  $F(x) = x^{(3^{k+1})/2}$  (Feng, Luo, 2007);  
(5)  $F(x)$  is DO type (Feng, Luo, 2007).

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_h^m(a\mathbf{F}(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

In 2017 Mesnager investigated the linear code  $C_F$  and showed that it is a 3-weight linear code if

- (1) h = 1;
- (2)  $a \in \mathbb{F}_p$ ; and
- (3)  $\operatorname{Tr}_1^m(F(x))$  is weakly regular bent.

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_h^m(a\mathbf{F}(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

In 2017 Mesnager investigated the linear code  $C_F$  and showed that it is a 3-weight linear code if

(1) *h* = 1;
(2) *a* ∈ 𝔽<sub>*p*</sub>; and
(3) Tr<sup>*m*</sup><sub>1</sub>(*F*(*x*)) is weakly regular bent.

### Problem

Determine the weight distribution of  $C_F$  if h = 1,  $a \in \mathbb{F}_p$  and  $\operatorname{Tr}_1^m(F(x))$  is non-weakly regular bent.

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_h^m(aF(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

In 2019 Mesnager, Özbudak, Sinak extended Mesnager's results and showed that  $C_F$  is a 3-weight linear code if

- (1) h = 1;
- (2)  $a \in \mathbb{F}_p$ ; and
- (3)  $\operatorname{Tr}_{1}^{m}(F(x))$  is weakly regular plateaued.

$$C_F = \left\{ \mathbf{c}(a,b) = (\mathrm{Tr}_h^m(aF(x) + bx)_{x \in \mathbb{F}_{p^m}^*} : a, b \in \mathbb{F}_{p^m} \right\}$$

In 2019 Mesnager, Özbudak, Sinak extended Mesnager's results and showed that  $C_F$  is a 3-weight linear code if

(1) h = 1; (2)  $a \in \mathbb{F}_p$ ; and (3)  $\operatorname{Tr}_1^m(F(x))$  is weakly regular plateaued.

### Problem

Determine the weight distribution of  $C_F$  if h = 1,  $a \in \mathbb{F}_p$  and  $\operatorname{Tr}_1^m(F(x))$  is non-weakly regular plateaued.

**Remark**: Research problems when F(x) is a power function!

### Outline

**Basic Concepts and Notations** 

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

The second generic construction of linear codes was proposed by Ding and Niederreiter in 2007 via defining set as follows:

$$C_D = \{ (\mathrm{Tr}_1^m(xd_1), \mathrm{Tr}_1^m(xd_2), \cdots, \mathrm{Tr}_1^m(xd_n)) : x \in \mathbb{F}_{p^m} \},\$$

where 
$$D = \{d_1, d_2, \cdots, d_n\} \subseteq \mathbb{F}_{p^m}$$
.

This is an efficient way to construct linear codes with few weights and it has been showed that all linear codes can be obtained from this approach (C. Xiang, 2016).

#### Research Problems:

- Select *D* such that *C*<sub>*D*</sub> has good parameters.
- Determine the weight distribution of  $C_D$ .

The construction of linear codes of the form

$$C_D = \{ (\mathrm{Tr}_1^m(xd_1), \mathrm{Tr}_1^m(xd_2), \cdots, \mathrm{Tr}_1^m(xd_n)) : x \in \mathbb{F}_{p^m} \}$$

reattracted researchers' attention due to Ding's work in 2015 in which Ding proposed 3 ways to define the defining set D via a Boolean function f from  $\mathbb{F}_{2^m}$  to  $\mathbb{F}_2$ :

- Support of  $f: D = \{x \in \mathbb{F}_{2^m} : f(x) = 1\};$
- Image of  $f: D = \{f(x) : x \in \mathbb{F}_{2^m}\};$
- Preimage of  $f: D = \{x \in \mathbb{F}_{2^m} : f(x) = b\}, b \in \mathbb{F}_2.$

Let F(x) be a mapping from  $\mathbb{F}_{2^m}$  to itself and  $f(x) = \operatorname{Tr}_1^m(F(x))$ . Ding investigated the linear code  $C_D$  when f(x) is one of the following cases:

- (1) f(x) is Boolean bent;
- (2) f(x) is semibent;
- (3) F(x) is AB;
- (4) f(x) is a quadratic Boolean function;
- (5) F(x) is an *o*-polynomial;
- (6) F(x) are some monomials;
- (7) F(x) are some trinomials.

Let F(x) be a mapping from  $\mathbb{F}_{2^m}$  to itself and  $f(x) = \operatorname{Tr}_1^m(F(x))$ . Ding investigated the linear code  $C_D$  when f(x) is one of the following cases:

- (1) f(x) is Boolean bent;
- (2) f(x) is semibent;
- (3) F(x) is AB;
- (4) f(x) is a quadratic Boolean function;
- (5) F(x) is an *o*-polynomial;
- (6) F(x) are some monomials;
- (7) F(x) are some trinomials.

### Problem

Prove the conjectures proposed by Ding in his paper (Discrete Mathematics 339(2): 2288-2303, 2016).

Motivated by Ding's work, many attempts have been made to construction linear codes of the form

$$C_D = \{ (\mathrm{Tr}_1^m(xd_1), \mathrm{Tr}_1^m(xd_2), \cdots, \mathrm{Tr}_1^m(xd_n)) : x \in \mathbb{F}_{p^m} \}$$

by choosing defining sets from nonlinear functions:

$$D = D_f$$
, where  $f(x) = \operatorname{Tr}_1^m(F(x))$ .

The linear code  $C_D$  has been well studied if

- $F(x) \stackrel{\text{PN}}{=} x^2$  (Ding, Ding, 2015);
- $F(x) \stackrel{\text{PN}}{=} x^{3^{k+1}}$  or  $F(x) = x^{(3^{k}+1)/2}$  (Heng, Yue, Li, 2016);
- ▶ f is quadratic bent (Zhou, L., Fan, Helleseth, 2016);
- f is weakly regular bent (Tang, L., Qi, Zhou, Helleseth, 2016);
- • •

Ding and Niederreiter's construction of linear codes was extended in three directions:

Ding and Niederreiter's construction of linear codes was extended in three directions:

Generalization I: Let  $f : \mathbb{F}_{2^m} \mapsto \mathbb{F}_2$  with f(ax) = f(x), where  $a \in \mathbb{F}_{2^t}^*$ and  $x \in \mathbb{F}_{2^m}$ ,  $D = \{x \in \mathbb{F}_{2^m}^* : f(x) = 0\}$ , and  $C_D$  is given by

 $C_D = \{ (\operatorname{Tr}_t^m(xd))_{d \in D} : x \in \mathbb{F}_{p^m} \}$ 

Ding and Niederreiter's construction of linear codes was extended in three directions:

Generalization I: Let  $f : \mathbb{F}_{2^m} \mapsto \mathbb{F}_2$  with f(ax) = f(x), where  $a \in \mathbb{F}_{2^t}^*$ and  $x \in \mathbb{F}_{2^m}$ ,  $D = \{x \in \mathbb{F}_{2^m}^* : f(x) = 0\}$ , and  $C_D$  is given by  $C_D = \{(\operatorname{Tr}_t^m(xd))_{d \in D} : x \in \mathbb{F}_{p^m}\}$ 

Generalization II: Let  $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^s}$  and  $D = \{d_1, \dots, d_n\}$  be the support of  $\operatorname{Tr}_1^s(\lambda F(x))$ . A linear code over  $\mathbb{F}_2$  is defined as

 $C_D = \{ (\mathrm{Tr}_1^m(xd) + \mathrm{Tr}_1^s(yF(d)))_{d \in D} : x \in \mathbb{F}_{2^m}, y \in \mathbb{F}_{2^s} \}$ 

Ding and Niederreiter's construction of linear codes was extended in three directions:

Generalization I: Let  $f : \mathbb{F}_{2^m} \mapsto \mathbb{F}_2$  with f(ax) = f(x), where  $a \in \mathbb{F}_{2^t}^*$ and  $x \in \mathbb{F}_{2^m}$ ,  $D = \{x \in \mathbb{F}_{2^m}^* : f(x) = 0\}$ , and  $C_D$  is given by  $C_D = \{(\operatorname{Tr}_t^m(xd))_{d \in D} : x \in \mathbb{F}_{p^m}\}$ 

Generalization II: Let  $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^s}$  and  $D = \{d_1, \dots, d_n\}$  be the support of  $\operatorname{Tr}_1^s(\lambda F(x))$ . A linear code over  $\mathbb{F}_2$  is defined as

$$C_D = \{ (\operatorname{Tr}_1^m(xd) + \operatorname{Tr}_1^s(yF(d)))_{d \in D} : x \in \mathbb{F}_{2^m}, y \in \mathbb{F}_{2^s} \}$$

Generalization III: Let  $D = D_f \subset (\mathbb{F}_{p^m})^t$ , where f(x) is a mapping from  $\mathbb{F}_{p^m}$  to  $\mathbb{F}_p$ . A linear code over  $\mathbb{F}_p$  is defined as

$$C_D = \{ (\mathrm{Tr}_1^m(a_1x_1 + \dots + a_tx_t)_{(a_1, \dots, a_t) \in D} : x_1, \dots, x_t \in \mathbb{F}_{p^m} \}$$

#### The Second Generic Construction: Generalization I

Let  $f : \mathbb{F}_{2^m} \mapsto \mathbb{F}_2$  with f(ax) = f(x), where  $a \in \mathbb{F}_{2^t}^*$  and  $x \in \mathbb{F}_{2^m}^*$ ,  $D = \{x \in \mathbb{F}_{2^m}^* : f(x) = 0\}$ . Define

 $C_D = \{(\operatorname{Tr}_t^m(xd_1), \operatorname{Tr}_t^m(xd_2), \cdots, \operatorname{Tr}_t^m(xd_n)) : x \in \mathbb{F}_{p^m}\}$ 

Xiang, Feng and Tang in 2017 builded up the connection between the weight distribution of  $C_D$  and the Walsh spectrum of f(x), and they further studied  $C_D$  when

- f(x) is bent;
- ▶ f(x) is simibent;
- f(x) is quadratic;
- $f(x) = f_1(x_1) + f_2(x_2)$ , where  $x = (x_1, x_2)$ .

#### The Second Generic Construction: Generalization II

Let  $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^s}$  and  $D = \{d_1, \dots, d_n\}$  be the support of  $\operatorname{Tr}_1^s(\lambda F(x))$ . Define

 $C_D = \{ (\mathrm{Tr}_1^m(xd) + \mathrm{Tr}_1^s(yF(d)))_{d \in D} : x \in \mathbb{F}_{2^m}, y \in \mathbb{F}_{2^s} \}$ 

Tang, Carlet and Zhou in 2017 studied  $C_D$  when

- F(x) is vectorial Boolean bent (m = 2s);
- F(x) is AB

and further studied its a class of subcodes when

- F(x) is vectorial Boolean bent (m = 2s);
- F(x) is Gold AB.

### The Second Generic Construction: Generalization II

Let  $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^s}$  and  $D = \{d_1, \dots, d_n\}$  be the support of  $\operatorname{Tr}_1^s(\lambda F(x))$ . Define

 $C_D = \{ (\mathrm{Tr}_1^m(xd) + \mathrm{Tr}_1^s(yF(d)))_{d \in D} : x \in \mathbb{F}_{2^m}, y \in \mathbb{F}_{2^s} \}$ 

Tang, Carlet and Zhou in 2017 studied  $C_D$  when

- F(x) is vectorial Boolean bent (m = 2s);
- F(x) is AB

and further studied its a class of subcodes when

- F(x) is vectorial Boolean bent (m = 2s);
- F(x) is Gold AB.

#### Problem

Determine the corresponding properties of the linear codes if  $m \neq 2s$  or F(x) is not Gold AB.

#### The Second Generic Construction: Generalization III

Let 
$$F_i(x)(i = 1, 2, \dots)$$
 be mappings from  $\mathbb{F}_{p^m}$  to  $\mathbb{F}_{p^m}$ . Define  
 $C_D = \{(\operatorname{Tr}_1^m(a_1x_1 + \dots + a_tx_t)_{(a_1, \dots, a_t) \in D} : x_1, \dots, x_t \in \mathbb{F}_{p^m}\}$ 

where the defining set D is defined as

$$D = \{(x_1, \cdots, x_t) : \operatorname{Tr}_1^m(F_1(x) + \cdots + F_t(x)) = 0\}.$$

The linear code  $C_D$  has been investigated when:

### The Second Generic Construction: A Modified Construction

Ding and Niederreiter's construction: Let F(x) be a mapping over  $\mathbb{F}_{p^m}$ ,  $D = \{\operatorname{Tr}_1^m(F(x)) = 0\}$  and  $C_D$  be defined as

$$C_D = \{(\operatorname{Tr}_1^m(xd_1), \operatorname{Tr}_1^m(xd_2), \cdots, \operatorname{Tr}_1^m(xd_n)) : x \in \mathbb{F}_{p^m}\}.$$

A modified construction: Let F(x) be a mapping over  $\mathbb{F}_{p^m}$ ,  $D = \{x \in \mathbb{F}_{p^m} : \operatorname{Tr}_1^m(x) = 0\}$  and  $C_{F(D)}$  be defined as

 $C_{F(D)} = \{ (\mathrm{Tr}_1^m(xF(d_1)), \mathrm{Tr}_1^m(xF(d_2)), \cdots, \mathrm{Tr}_1^m(xF(d_n))) : x \in \mathbb{F}_{p^m} \}.$ 

Questions:

- **1** How to select F(x) such that  $C_{F(D)}$  has good parameters?
- 2 What's the relation between these two constructions?

### The Second Generic Construction: A Modified Construction

For the modified construction of linear codes of the form

 $C_{F(D)} = \{ (\mathrm{Tr}_1^m(xF(d_1)), \mathrm{Tr}_1^m(xF(d_2)), \cdots, \mathrm{Tr}_1^m(xF(d_n))) : x \in \mathbb{F}_{p^m} \},\$ 

the following functions were employed to obtain good codes:

• 
$$F(x) = x^2$$
 (Wang, Li, Lin, 2015);

• 
$$F(x) = x^2$$
 (Yang, Yao, 2017);

▶ 
$$F(x) = x^d$$
, d is of Niho type (Luo, Cao, Xu, Mi, 2017);

- $F(x) = x^{2^{h}+1}$ , (Li, Yan, Wang, Yan, 2019);
- ▶  $F(x) = x^d$ , d is of Niho type (Hu, L., Zeng, under review);
- ▶ F(x) is PN (Wu, L., Zeng, under review);
- • •



#### Problem

Let F(x) be a mapping over  $\mathbb{F}_{p^m}$  and  $D \subset \mathbb{F}_{p^m}$ . Then

(1) How to choose F(x) such that  $C_{F(D)}$  is good?

(2) What's the relation between  $C_D$  and  $C_{F(D)}$ ?



#### Problem

Let F(x) and G(x) be two mappings over  $\mathbb{F}_{p^m}$  and  $D \subset \mathbb{F}_{p^m}$ . Then what's the relation between  $C_{F(D)}$  and  $C_{G(D)}$  if F(x) and G(x) are equivalent?

### Outline

**Basic Concepts and Notations** 

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

Let  $\alpha$  be a primitive element of  $\mathbb{F}_{p^m}$  and  $m_{\alpha^i}(x)$  denote the minimal polynomial of  $\alpha^i$  over  $\mathbb{F}_p$  for  $1 \le i \le p^n - 1$ . Define

$$C_{(d_1,d_2,\cdots,d_k)} = \langle m_{\alpha^{d_1}}(x)m_{\alpha^{d_2}}(x)\cdots m_{\alpha^{d_k}}(x) \rangle,$$

i.e., cyclic codes with generator polynomial

$$m_{\alpha^{d_1}}(x)m_{\alpha^{d_2}}(x)\cdots m_{\alpha^{d_k}}(x).$$

**Research Topics** 

- **1** Find  $C_{(d_1, d_2, \dots, d_k)}$  with optimal or good parameters;
- 2 Determine the weight distribution of its dual code.

The cyclic code  ${\cal C}_{(d_1,d_2)}$  had been well studied and it has close connection with

- APN and AB functions;
- cross-correlation between *m*-sequences.

The details can be reached at

- Carlet, Charpin, Zinoviev, Des. Codes Cryptogr. 15: 125-156, 1998.
- [2] Canteaut, Charpin, Dobbertin, SIAM J. Discrete Math. 13(1): 105-138, 2000.
- [3] Hollmann, Xiang, Finite Fields Appl. 7: 253-286, 2001.
- [4] Katz, J. Comb. Theory, Ser. A 119(8): 1644-1659, 2012.
- [5] Ding, Li, L., Zhou, Discrete Math. 339: 415-427, 2016.

Known results on  $C_{(d_1,d_2)}$ :

- ▶ p = 2:  $C_{(1,e)}$  is optimal if and only if  $x^e$  is APN;
- p = 3:  $C_{(1,e)}$  is optimal if  $x^e$  is PN;
- p > 3:  $C_{(1,e)}$  cannot be optimal.

In 2013 Ding and Helleseth aimed to find new optimal ternary cyclic codes with parameters  $[3^m - 1, 3^m - 2m - 1, 4]$  and they

- (1) proved that  $C_{(1,e)}$  is optimal if  $x^e$  is APN;
- (2) proved that  $C_{(1,e)}$  is optimal if  $x^e$  satisfies certain conditions;
- (3) proposed 9 open problems on the optimality of  $C_{(1,e)}$ .

#### Problem

What property of  $x^e$  leads to an optimal ternary code  $C_{(1,e)}$ ?

Open problems proposed by Ding and Helleseth:

(1) 
$$e = 2(3^{h} + 1)$$
 (solved by L., Zhou, Helleseth, 2015)  
(2)  $e = 2(3^{m-1} - 1)$  (solved by L., Li, Helleseth, Ding, Tang, 2014)  
(3)  $e = (3^{h} + 5)/2$ , m odd (remains open)  
(4)  $e = (3^{h} - 5)/2$ , m odd (remains open)  
(5)  $e = (3^{h} - 5)/2$ , m even (remains open)  
(6)  $e = 3^{h} + 5$ , m even (solved by Han, Yan, 2019)  
(7)  $e = 3^{h} + 5$ , m prime (partially solved by Han, Yan, 2019)  
(8)  $e = 3^{h} + 13$ , m prime (partially solved by Han, Yan, 2019)  
(9)  $e = (3^{m-1} - 1)/2 + 3^{h} + 1$  (partially solved by Han, Yan, 2019)

More results about the cyclic code  $C_{(1,e)}$ :

- (1) Ternary optimal codes:
  - $C_{(0,1,e)}$  when  $x^e$  is PN (Carlet, Ding, Yuan, 2005);
  - $C_{(1,e,\frac{3^m-1}{2})}$  for some e (L., Li, Helleseth, Ding, Tang, 2014)
- (2) The weight distribution of  $C_{(1,e)}^{\perp}$  is determined when
  - ▶ x<sup>e</sup> is PN (Carlet, Ding, Yuan, 2005);
  - ▶ x<sup>e</sup> is APN (Li, L., Helleseth, Ding, 2014)

(3) Cyclic code  $C_{(d_1,d_2)}$ 

Ding, Li, L., Zhou, Discrete Math. 339: 415-427, 2016.

. . .

### Outline

**Basic Concepts and Notations** 

Linear Codes From Cryptographic Functions: Approach I

Linear Codes From Cryptographic Functions: Approach II

Cyclic Codes From Cryptographic Functions: Approach I

Cyclic Codes From Cryptographic Functions: Approach II

Let  $C = \langle g(x) \rangle$  be a cyclic code of length *n* over  $\mathbb{F}_p$ . The polynomial g(x) is called the generator polynomial of *C* and

 $\frac{x^n-1}{g(x)}$ 

is referred to as the parity-check polynomial.

Let  $s = (s_i)$  be a sequence of period *n* over  $\mathbb{F}_p$ . The minimal polynomial of  $s = (s_i)$  is given by

 $\frac{x^n-1}{\gcd(s(x),x^n-1)},$ 

where  $s(x) = s_0 + s_1 x + \dots + s_{n-1} x^{n-1}$ .

$$s = (s_i) \xrightarrow{\text{minimal polynomial}} \frac{x^n - 1}{\gcd(s(x), x^n - 1)} \xrightarrow{\text{generator polynomial}} C_s$$

Ding in 2012 employed the sequence  $s = (s_i)$  over  $\mathbb{F}_p$  to construct cyclic code  $C_s$  when  $s = (s_i)$  is the

- Two-prime sequence;
- Cyclotomic sequence of order 4

and obtained some (almost) optimal cyclic codes.

### Problem

What property of the sequence *s* leads to an (almost) optimal cyclic code?

Let F(x) be a polynomial over  $\mathbb{F}_{p^m}$  and  $\alpha$  be a primitive element of  $\mathbb{F}_{p^m}$ . A sequence associated with F(x) is defined by

 $s_i = \operatorname{Tr}_1^m(F(\alpha^i + 1)), \forall i \ge 0.$ 

The following functions were employed to construct cyclic codes: (1)  $F(x) \stackrel{\text{APN}}{=} x^{-1}$  (Ding, 2013; Tang, Qi, Xu, 2014); (2)  $F(x) \stackrel{\text{PN}}{=} x^{p^k+1}$  (Ding, 2013); (3)  $F(x) \stackrel{\text{APN}}{=} x^{p^{2h}-p^{h}+1}$  (Ding, Zhou, 2014); (4)  $F(x) = x^{(p^h-1)/(p-1)}$  (Ding, Zhou, 2014); (5)  $F(x) \stackrel{\text{PN}}{=} x^{(3^k+1)/2}$  (Ding, 2013); (6)  $F(x) \stackrel{\text{APN}}{=} x^{2^{k+3}}$  (Ding, Zhou, 2014); (7)  $F(x) \stackrel{\text{APN}}{=} x^{2^{2t}+2^t-1}, m = 4t+1$  (Ding, Zhou, 2014); (8) F(x) are some Dickson polynomials; (Ding, 2012); (9)  $F(x) \stackrel{\text{APN}}{=}$  Dobbertin APN function (Tang, Qi, Xu, 2014).

The details can be found at a nice survey paper:

C. Ding, Cryptogr. Commun. 10(2): 319-341, 2018.

The details can be found at a nice survey paper:

C. Ding, Cryptogr. Commun. 10(2): 319-341, 2018.

#### Problem

Answer the open problems listed in the above Ding's survey paper.

The details can be found at a nice survey paper:

C. Ding, Cryptogr. Commun. 10(2): 319-341, 2018.

#### Problem

Answer the open problems listed in the above Ding's survey paper.

#### Problem

How to determine or give a tight bound on the minimal distance of the cyclic code obtained from this sequence approach?

The details can be found at a nice survey paper:

C. Ding, Cryptogr. Commun. 10(2): 319-341, 2018.

### Problem

Answer the open problems listed in the above Ding's survey paper.

### Problem

How to determine or give a tight bound on the minimal distance of the cyclic code obtained from this sequence approach?

### Problem

Build up deeper connections among the pseudorandom properties of  $s = (s_i)$ , the cryptographic properties of F(x) and the parameters of  $C_s$ .

# Thank You!

Questions? Comments? Suggestions?