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Linear Codes

Let Fpm denote the finite field with pm elements, where p is a prime
and m is a positive integer.

Linear code: An [n,k,d] linear code over Fp is a k-dimensional
subspace of Fn

p with minimum distance d.

Optimal(resp. almost optimal) code: An [n,k,d] code is called
optimal(resp. almost optimal) if its parameters n, k and d
(resp. d+1)meet a bound on linear codes.

Weight distribution: The sequence (1,A1,A2, · · · ,An) is called
the weight distribution of C, where Ai is the number of
codewords with Hamming weight i in a code C of length n.

t-weight code: A code C is said to be t-weight if the number
of nonzero Ai in (1,A1,A2, · · · ,An) is equal to t.
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Linear Codes

Linear codes with good parameters can be employed in data
storage systems and communication systems.

Weight distribution of a code
allows the computation of the error probability of error
detection and correction with respect to some error detection
and error correction algorithms [T. Kløve, 2007].
gives the minimum distance and the error correcting capability
of a linear code C.

Main Research Problems:

1 Find new linear codes with good parameters [n,k,d];

2 Determine the weight distribution for a code C.
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Applications of Linear Codes

(1) Applications of linear codes:
communication systems;
consumer electronics;
data storage systems;
· · ·

(2) Applications of t-weight linear codes:
secret sharing;
authentication codes;
association schemes;
strongly regular graphs;
· · ·
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Cryptographic Functions

Let F(x) be a function from Fpn to Fpm and f (x) be a function from
Fpm to Fp. The differential uniformity of F(x) is defined by

δF = max
a∈F∗pn ,b∈Fpm

#{x ∈ Fpn : F(x+a)−F(x) = b}

and the Walsh transforms of f (x) and F(x) are defined by

Wf (a) =
∑

x∈Fpm

ζ
f (x)−Trm

1 (ax)
p ,

WF(a,b) =
∑

x∈Fpn

ζ
Trm

1 (bF(x))−Trn
1(ax)

p ,

respectively, where ζp is a p-th primitive root of unity.
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Cryptographic Functions

Let f (x) and F(x) be defined as above:

F is perfect nonlinear (PN): δF = 1.

F is almost perfect nonlinear (APN): δF = 2.

f is bent: |Wf (a)|= pm/2 for all a ∈ Fpm .

F is vectorial bent: |Wf (a)|= 2n/2, a ∈ F2n and b ∈ F∗2m .

f is weakly regular bent: Wf (λ ) = ε
√

p∗mζ
f ∗(λ )
p , ε =±1.

F is almost bent (AB): WF(a,b) ∈ {0,±2
n+1

2 }, a ∈ F2n , b ∈ F∗2n .

f is a plateaued: Wf (a) ∈ {0,±µ} for all a ∈ Fpn .

F is plateaued: each Trm
1 (bF(x)), b 6= 0, is plateaued.

f is weakly regular s-plateaued: Wf (a) ∈ {0, up
m+s

2 ζ
g(a)
p }, |u|=1.
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The First Generic Construction of Linear Codes from
Cryptographic Functions

The first generic construction of linear codes from cryptographic
functions is given as follows:

CF =
{
c(a,b) = (Trm

1 (aF(x)+bx)x∈F∗pm : a,b ∈ Fpm
}

where F(x) is a mapping from Fpm to Fpm and Trm
1 (·) is the trace

function from Fpm to Fp.

Research Problem:
Select F(x) such that CF has good parameters.

Determine the weight distribution of CF.
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The First Generic Construction of Linear Codes from
Cryptographic Functions

The dual code C⊥F of CF is the code with parity check matrix 1 α α2 . . . αpm−2

F(1) F(α) F
(
α2
)

. . . F
(
αpm−2

)


Theorem (Carlet, Charpin, Zinoviev, 1998) Let d be the minimal
distance and Ω = { j : Ai 6= 0,1≤ j≤ pm −1} be the characteristic
set of C⊥F , where (1,A1, · · · ,Apm−1) is the weight distribution of CF.
If p = 2, then
(1) C⊥F is such that 3≤ d ≤ 5;
(2) F(x) is APN if and only if d = 5;
(3) F(x) is AB if and only if Ω looks as {2m−1,2m−1±2(m−1)/2}.
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The First Generic Construction of Linear Codes from
Cryptographic Functions

CF =
{
c(a,b) = (Trm

h (aF(x)+bx)x∈F∗pm : a,b ∈ Fpm
}

CF =
{
c(a,b) = (Trm

h (aF(x)+bx+ c)x∈F∗pm : a,b,c ∈ Fpm
}

Theorem (Carlet, Ding, Yuan, 2005) If F(x)is PN with F(0) = 0,
then CF (resp. CF) has parameters [pm −1,2m/h,d; ph ] (resp.
[pm −1,1+2m/h,d; ph ]) with

d ≥ ph −1
ph (pm −pm/2).

Remarks:
The dual codes of CF and CF had also been investigated;
Special cases: such as h = 1 or F(x) is a power function;
Many optimal or best known codes were obtained.
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The First Generic Construction of Linear Codes from
Cryptographic Functions

CF =
{
c(a,b) = (Trm

h (aF(x))+bx)x∈F∗pm : a,b ∈ Fpm
}

The weight distribution of CF for h = 1 was determined when F(x)
is a PN function of the form:
(1) F(x) = xpk+1 (Yuan, Carlet, Ding, 2006);
(2) F(x) = x10 −ux6 −u2x2 (Yuan, Carlet, Ding, 2006);

(3) F(x) = x(3
k+1)/2, m odd (Yuan, Carlet, Ding, 2006);

(4) F(x) = x(3
k+1)/2 (Feng, Luo, 2007);

(5) F(x) is DO type (Feng, Luo, 2007).
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The First Generic Construction of Linear Codes from
Cryptographic Functions

CF =
{
c(a,b) = (Trm

h (aF(x)+bx)x∈F∗pm : a,b ∈ Fpm
}

In 2017 Mesnager investigated the linear code CF and showed that
it is a 3-weight linear code if
(1) h = 1;
(2) a ∈ Fp; and
(3) Trm

1 (F(x)) is weakly regular bent.

Problem
Determine the weight distribution of CF if h = 1, a ∈ Fp and
Trm

1 (F(x)) is non-weakly regular bent.
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The First Generic Construction of Linear Codes from
Cryptographic Functions

CF =
{
c(a,b) = (Trm

h (aF(x)+bx)x∈F∗pm : a,b ∈ Fpm
}

In 2019 Mesnager, Özbudak, Sinak extended Mesnager’s results
and showed that CF is a 3-weight linear code if
(1) h = 1;
(2) a ∈ Fp; and
(3) Trm

1 (F(x)) is weakly regular plateaued.

Problem
Determine the weight distribution of CF if h = 1, a ∈ Fp and
Trm

1 (F(x)) is non-weakly regular plateaued.

Remark: Research problems when F(x) is a power function!
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

The second generic construction of linear codes was proposed by
Ding and Niederreiter in 2007 via defining set as follows:

CD = {(Trm
1 (xd1),Trm

1 (xd2), · · · ,Trm
1 (xdn)) : x ∈ Fpm},

where D = {d1,d2, · · · ,dn}⊆ Fpm .

This is an efficient way to construct linear codes with few weights
and it has been showed that all linear codes can be obtained from
this approach (C. Xiang, 2016).

Research Problems:
Select D such that CD has good parameters.

Determine the weight distribution of CD.
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

The construction of linear codes of the form

CD = {(Trm
1 (xd1),Trm

1 (xd2), · · · ,Trm
1 (xdn)) : x ∈ Fpm}

reattracted researchers’ attention due to Ding’s work in 2015 in
which Ding proposed 3 ways to define the defining set D via a
Boolean function f from F2m to F2:

Support of f : D = {x ∈ F2m : f (x) = 1};
Image of f : D = {f (x) : x ∈ F2m};
Preimage of f : D = {x ∈ F2m : f (x) = b}, b ∈ F2.
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

Let F(x) be a mapping from F2m to itself and f (x) = Trm
1 (F(x)).

Ding investigated the linear code CD when f (x) is one of the
following cases:
(1) f (x) is Boolean bent;
(2) f (x) is semibent;
(3) F(x) is AB;
(4) f (x) is a quadratic Boolean function;
(5) F(x) is an o-polynomial;
(6) F(x) are some monomials;
(7) F(x) are some trinomials.

Problem
Prove the conjectures proposed by Ding in his paper (Discrete
Mathematics 339(2): 2288-2303, 2016).
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

Motivated by Ding’s work, many attempts have been made to
construction linear codes of the form

CD = {(Trm
1 (xd1),Trm

1 (xd2), · · · ,Trm
1 (xdn)) : x ∈ Fpm}

by choosing defining sets from nonlinear functions:

D = Df , where f (x) = Trm
1 (F(x)).

The linear code CD has been well studied if

F(x) PN
= x2 (Ding, Ding, 2015);

F(x) PN
= x3k+1 or F(x) = x(3

k+1)/2 (Heng, Yue, Li, 2016);
f is quadratic bent (Zhou, L., Fan, Helleseth, 2016);
f is weakly regular bent (Tang, L., Qi, Zhou, Helleseth, 2016);
· · ·
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

Ding and Niederreiter’s construction of linear codes was extended
in three directions:

Generalization I: Let f : F2m 7→ F2 with f (ax) = f (x), where a ∈ F∗2t

and x ∈ F2m , D = {x ∈ F∗2m : f (x) = 0}, and CD is given by

CD = {(Trm
t (xd))d∈D : x ∈ Fpm}

Generalization II: Let F : F2m 7→ F2s and D = {d1, · · · ,dn} be the
support of Trs

1(λF(x)). A linear code over F2 is defined as

CD = {(Trm
1 (xd)+Trs

1(yF(d)))d∈D : x ∈ F2m ,y ∈ F2s}

Generalization III: Let D = Df ⊂ (Fpm)t, where f (x) is a mapping
from Fpm to Fp. A linear code over Fp is defined as

CD = {(Trm
1 (a1x1 + · · ·+atxt)(a1,··· ,at)∈D : x1, · · · ,xt ∈ Fpm}
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The Second Generic Construction: Generalization I

Let f : F2m 7→ F2 with f (ax) = f (x), where a ∈ F∗2t and x ∈ F2m ,
D = {x ∈ F∗2m : f (x) = 0}. Define

CD = {(Trm
t (xd1),Trm

t (xd2), · · · ,Trm
t (xdn)) : x ∈ Fpm}

Xiang, Feng and Tang in 2017 builded up the connection between
the weight distribution of CD and the Walsh spectrum of f (x), and
they further studied CD when

f (x) is bent;
f (x) is simibent;
f (x) is quadratic;
f (x) = f1(x1)+ f2(x2), where x = (x1,x2).
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The Second Generic Construction: Generalization II

Let F : F2m 7→ F2s and D = {d1, · · · ,dn} be the support of
Trs

1(λF(x)). Define

CD = {(Trm
1 (xd)+Trs

1(yF(d)))d∈D : x ∈ F2m ,y ∈ F2s}

Tang, Carlet and Zhou in 2017 studied CD when
F(x) is vectorial Boolean bent (m = 2s);
F(x) is AB

and further studied its a class of subcodes when
F(x) is vectorial Boolean bent (m = 2s);
F(x) is Gold AB.

Problem
Determine the corresponding properties of the linear codes if
m 6= 2s or F(x) is not Gold AB.
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The Second Generic Construction: Generalization II
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The Second Generic Construction: Generalization III

Let Fi(x)(i = 1,2, · · ·) be mappings from Fpm to Fpm . Define

CD = {(Trm
1 (a1x1 + · · ·+atxt)(a1,··· ,at)∈D : x1, · · · ,xt ∈ Fpm}

where the defining set D is defined as

D = {(x1, · · · ,xt) : Trm
1 (F1(x)+ · · ·+Ft(x)) = 0}.

The linear code CD has been investigated when:
t = 2: Fi(x) = xdi are certain monomials (Li, Yue, Fu, 2016);
t ≥ 1: F(x) = x2 (Li, Bae, Yang, 2019);

t = 2: F1(x) = x and F2(x) = xpk+1 (Jian, Lin, Feng, 2019);

t = 2: F1(x) = x2 and F2(x) = xpk+1 (Jian, Lin, Feng, 2019);
t = 2: Fi(x) is PN (Wu, L., Zeng, under review);
· · ·
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The Second Generic Construction:
A Modified Construction

Ding and Niederreiter’s construction: Let F(x) be a mapping over
Fpm , D = {Trm

1 (F(x)) = 0} and CD be defined as

CD = {(Trm
1 (xd1),Trm

1 (xd2), · · · ,Trm
1 (xdn)) : x ∈ Fpm}.

A modified construction: Let F(x) be a mapping over Fpm ,
D = {x ∈ Fpm : Trm

1 (x) = 0} and CF(D) be defined as

CF(D) = {(Trm
1 (xF(d1)),Trm

1 (xF(d2)), · · · ,Trm
1 (xF(dn))) : x ∈ Fpm}.

Questions:
1 How to select F(x) such that CF(D) has good parameters?

2 What’s the relation between these two constructions?
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The Second Generic Construction:
A Modified Construction

For the modified construction of linear codes of the form

CF(D) = {(Trm
1 (xF(d1)),Trm

1 (xF(d2)), · · · ,Trm
1 (xF(dn))) : x ∈ Fpm},

the following functions were employed to obtain good codes:
F(x) = x2 (Wang, Li, Lin, 2015);
F(x) = x2 (Yang, Yao, 2017);
F(x) = xd, d is of Niho type (Luo, Cao, Xu, Mi, 2017);

F(x) = x2h+1, (Li, Yan, Wang, Yan, 2019);
F(x) = xd, d is of Niho type (Hu, L., Zeng, under review);
F(x) is PN (Wu, L., Zeng, under review);
· · ·
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

D linear code−−−−−−−→ CDyF(x)
y?

F(D)
linear code−−−−−−−→ CF(D)

Problem
Let F(x) be a mapping over Fpm and D⊂ Fpm . Then

(1) How to choose F(x) such that CF(D) is good?

(2) What’s the relation between CD and CF(D)?
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The Second Generic Construction of Linear Codes from
Cryptographic Functions

F(x)
Equivalent ?−−−−−−−−→ G(x)yD

yD

CF(D)
?−−−−→ CG(D)

Problem
Let F(x) and G(x) be two mappings over Fpm and D⊂ Fpm . Then
what’s the relation between CF(D) and CG(D) if F(x) and G(x) are
equivalent?
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Cyclic Codes From Cryptographic Functions:
Minimal Polynomial Approach

Let α be a primitive element of Fpm and mα i(x) denote the minimal
polynomial of α i over Fp for 1≤ i≤ pn −1. Define

C(d1,d2,··· ,dk) = 〈mαd1 (x)mαd2 (x) · · ·mαdk (x)〉,

i.e., cyclic codes with generator polynomial

m
αd1 (x)mαd2 (x) · · ·mαdk (x).

Research Topics

1 Find C(d1,d2,··· ,dk) with optimal or good parameters;

2 Determine the weight distribution of its dual code.
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Cyclic Codes From Cryptographic Functions:
Minimal Polynomial Approach

The cyclic code C(d1,d2) had been well studied and it has close
connection with

APN and AB functions;
cross-correlation between m-sequences.

The details can be reached at
[1 ] Carlet, Charpin, Zinoviev, Des. Codes Cryptogr. 15:
125-156, 1998.

[2 ] Canteaut, Charpin, Dobbertin, SIAM J. Discrete Math.
13(1): 105-138, 2000.

[3 ] Hollmann, Xiang, Finite Fields Appl. 7: 253-286, 2001.
[4 ] Katz, J. Comb. Theory, Ser. A 119(8): 1644-1659, 2012.
[5 ] Ding, Li, L., Zhou, Discrete Math. 339: 415-427, 2016.
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Cyclic Codes From Cryptographic Functions:
Minimal Polynomial Approach

Known results on C(d1,d2):
p = 2: C(1,e) is optimal if and only if xe is APN;
p = 3: C(1,e) is optimal if xe is PN;
p > 3: C(1,e) cannot be optimal.

In 2013 Ding and Helleseth aimed to find new optimal ternary
cyclic codes with parameters [3m −1,3m −2m−1,4] and they
(1) proved that C(1,e) is optimal if xe is APN;
(2) proved that C(1,e) is optimal if xe satisfies certain conditions;
(3) proposed 9 open problems on the optimality of C(1,e).

Problem
What property of xe leads to an optimal ternary code C(1,e)?
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Cyclic Codes From Cryptographic Functions:
Minimal Polynomial Approach

Open problems proposed by Ding and Helleseth:

(1) e = 2(3h +1) (solved by L., Zhou, Helleseth, 2015)
(2) e = 2(3m−1 −1) (solved by L., Li, Helleseth, Ding, Tang, 2014)
(3) e = (3h +5)/2, m odd (remains open)
(4) e = (3h −5)/2, m odd (remains open)
(5) e = (3h −5)/2, m even (remains open)
(6) e = 3h +5, m even (solved by Han, Yan, 2019)
(7) e = 3h +5, m prime (partially solved by Han, Yan, 2019)
(8) e = 3h +13, m prime (partially solved by Han, Yan, 2019)
(9) e = (3m−1 −1)/2+3h +1 (partially solved by Han, Yan, 2019)
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Cyclic Codes From Cryptographic Functions:
Minimal Polynomial Approach

More results about the cyclic code C(1,e):

(1) Ternary optimal codes:
C(0,1,e) when xe is PN (Carlet, Ding, Yuan, 2005);
C(1,e, 3m−1

2 ) for some e (L., Li, Helleseth, Ding, Tang, 2014)

(2) The weight distribution of C⊥(1,e) is determined when

xe is PN (Carlet, Ding, Yuan, 2005);
xe is APN (Li, L., Helleseth, Ding, 2014)

(3) Cyclic code C(d1,d2)

Ding, Li, L., Zhou, Discrete Math. 339: 415-427, 2016.
· · ·
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Cyclic Codes From Cryptographic Functions:
Sequence Approach

Let C =< g(x)> be a cyclic code of length n over Fp. The
polynomial g(x) is called the generator polynomial of C and

xn −1
g(x)

is referred to as the parity-check polynomial.

Let s = (si) be a sequence of period n over Fp. The minimal
polynomial of s = (si) is given by

xn −1
gcd(s(x),xn −1)

,

where s(x) = s0 + s1x+ · · ·+ sn−1xn−1.
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Cyclic Codes From Cryptographic Functions:
Sequence Approach

s = (si)
minimal polynomial−−−−−−−−−−−→ xn−1

gcd(s(x),xn−1)
generator polynomial−−−−−−−−−−−−→ Cs

Ding in 2012 employed the sequence s = (si) over Fp to construct
cyclic code Cs when s = (si) is the

Two-prime sequence;
Cyclotomic sequence of order 4

and obtained some (almost) optimal cyclic codes.

Problem
What property of the sequence s leads to an (almost) optimal
cyclic code?
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Cyclic Codes From Cryptographic Functions:
Sequence Approach

Let F(x) be a polynomial over Fpm and α be a primitive element of
Fpm . A sequence associated with F(x) is defined by

si = Trm
1 (F(α

i +1)), ∀ i≥ 0.

The following functions were employed to construct cyclic codes:
(1) F(x) APN

= x−1 (Ding, 2013; Tang, Qi, Xu, 2014);
(2) F(x) PN

= xpk+1 (Ding, 2013);
(3) F(x) APN

= xp2h−ph+1 (Ding, Zhou, 2014);
(4) F(x) = x(p

h−1)/(p−1) (Ding, Zhou, 2014);
(5) F(x) PN

= x(3
k+1)/2 (Ding, 2013);

(6) F(x) APN
= x2k+3 (Ding, Zhou, 2014);

(7) F(x) APN
= x22t+2t−1, m = 4t+1 (Ding, Zhou, 2014);

(8) F(x) are some Dickson polynomials; (Ding, 2012);
(9) F(x) APN

= Dobbertin APN function (Tang, Qi, Xu, 2014).
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Cyclic Codes From Cryptographic Functions:
Sequence Approach

The details can be found at a nice survey paper:

C. Ding, Cryptogr. Commun. 10(2): 319-341, 2018.

Problem
Answer the open problems listed in the above Ding’s survey paper.

Problem
How to determine or give a tight bound on the minimal distance of
the cyclic code obtained from this sequence approach?

Problem
Build up deeper connections among the pseudorandom properties
of s = (si), the cryptographic properties of F(x) and the parameters
of Cs.
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Thank You !

Questions? Comments? Suggestions?
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