EA-equivalence Classes of Known APN Functions in Small Dimensions

Marco Calderini

University of Bergen

Boolean Functions and their Applications June 16-21, 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Notations and definitions

PN and APN functions:

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a Vectorial Boolean function. We define $\delta_F(a,b) = |\{x \in \mathbb{F}_2^n : F(x+a) - F(x) = b\}|.$

The differential uniformity of F is

$$\delta(F) = \max_{a \in \mathbb{F}_2^n \setminus \{0\}, b \in \mathbb{F}_2^m} \delta_F(a, b).$$

If $\delta(F) = 2^{n-m}$ then F is said **Perfect Nonlinear** (PN) or **Bent**. Best resistance to differential attack. K. Nyberg: Bent functions exist only when n is even and $m \le n/2$.

If m = n, then $\delta(F) \geq 2$.

If $\delta(F) = 2$, then F is called **almost perfect nonlinear** (APN).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

AB functions:

The **nonlinearity** of a vectorial Boolean function F is the minimum Hamming distance between

- ▶ all component functions $v \cdot F(x)$, $v \neq 0$ and
- ▶ all affine functions $u \cdot x + \varepsilon$, $u \in \mathbb{F}_2^n \ \varepsilon \in \mathbb{F}_2$.

The nonlinearity can be given in terms of the Walsh transform of F

$$\mathscr{W}_{\mathsf{F}}(\mathsf{a},b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{\mathsf{a} \cdot x + b \cdot \mathsf{F}(x)}.$$

The nonlinearity equals:

$$\mathscr{N}\ell(\mathsf{F})=2^{n-1}-rac{1}{2}\max_{\substack{a\in\mathbb{F}_2^n,\b\in\mathbb{F}_2^mackslash\{0\}}}|\mathscr{W}_\mathsf{F}(\mathsf{a},b)|.$$

Bounds on nonlinearity

$$\mathscr{N}\ell(\mathsf{F})\leq 2^{n-1}-2^{n/2-1}.$$

The equality holds iff F is bent (best resistance to linear attack). If n = m the Sidelnikov-Chabaud-Vaudenay bound states

$$\mathscr{N}\ell(\mathsf{F}) \leq 2^{n-1} - 2^{\frac{n-1}{2}}$$

In case of equality (n necessarily odd) F is called almost bent (AB).

 $\mathsf{AB} \Rightarrow \mathsf{APN}$

From now on, we assume that m = n. In this case we can identify \mathbb{F}_2^n with \mathbb{F}_{2^n} and then we can take $x \cdot y = tr(xy)$.

Functions	Exponents d	Conditions	Degree
Gold	$2^{i} + 1$	gcd(i, n) = 1	2
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1	i+1
Welch	$2^{t} + 3$	n = 2t + 1	3
Niho	$2^t + 2^{rac{t}{2}} - 1$, t even	n = 2t + 1	$\frac{t+2}{2}$
	$2^t + 2^{rac{3t+1}{2}} - 1$, t odd		$t{+}1$
Inverse	$2^{2t} - 1$	n = 2t + 1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5 <i>i</i>	<i>i</i> +3

Table: Known APN power functions x^d over \mathbb{F}_{2^n}

Functions	Exponents d	Conditions	Degree
Gold	$2^{i} + 1$	gcd(i, n) = 1	2
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1	i+1
Welch	$2^{t} + 3$	n = 2t + 1	3
Niho	$2^t + 2^{rac{t}{2}} - 1$, t even	n = 2t + 1	$\frac{t+2}{2}$
	$2^t + 2^{rac{3t+1}{2}} - 1$, t odd		$t{+}1$
Inverse	$2^{2t} - 1$	n = 2t + 1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5 <i>i</i>	<i>i</i> +3

Table: Known APN power functions x^d over \mathbb{F}_{2^n}

Gold, Kasami, Welch and Niho functions are AB for n odd

Equivalence relations

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **affine equivalent** iff

$$G = A_2 \circ F \circ A_1(x),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

with A_1 and A_2 affine permutations.

Equivalence relations

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **affine equivalent** iff

$$G = A_2 \circ F \circ A_1(x),$$

with A_1 and A_2 affine permutations.

\cap

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **EA-equivalent** iff

$$G = A_2 \circ F \circ A_1(x) + A(x),$$

with A, A_1 and A_2 affine maps and A_1 and A_2 permutations.

Equivalence relations

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **affine equivalent** iff

$$G = A_2 \circ F \circ A_1(x),$$

with A_1 and A_2 affine permutations.

\cap

Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **EA-equivalent** iff

$$G = A_2 \circ F \circ A_1(x) + A(x),$$

with A, A_1 and A_2 affine maps and A_1 and A_2 permutations.

Let $\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{F}_{2^n}\}.$ Two functions $F, G : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are **CCZ-equivalent** if and only if Γ_F and Γ_G are affine-equivalent, i.e. let \mathscr{L} an affine permutation on $(\mathbb{F}_{2^n})^2$, $\mathscr{L}(\Gamma_F) = \Gamma_G.$

CCZ-equivalence

Let \mathscr{L} be a linear permutation of $(\mathbb{F}_{2^n})^2$ such that $\mathscr{L}(\Gamma_F) = \Gamma_G$. $\mathscr{L} = (L_1, L_2)$ for some linear $L_1, L_2 : (\mathbb{F}_{2^n})^2 \to \mathbb{F}_{2^n}$. Then

 $\mathscr{L}(x,F(x))=(F_1(x),F_2(x)),$

where $F_1(x) = L_1(x, F(x))$ and $F_2(x) = L_2(x, F(x))$.

$$\mathscr{L}(\Gamma_F) = \{(F_1(x), F_2(x)) : x \in \mathbb{F}_{2^n}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

 $\mathscr{L}(\Gamma_F)$ is the graph of G iff the function F_1 is a permutation and $G = F_2 \circ F_1^{-1}$

If we want to construct G which can be obtained from F via CCZ-equivalence:

- ► Find a permutation L₁(x, F(x)) = L(x) + R ∘ F(x) where L, R are linear.
- ► Then find linear function L₂(x,y) = L'(x) + R'(y) such that ℒ is a permutation. (Found L₁ then there always exists suitable L₂)

Relation between CCZ- and EA-equivalences

Cases when CCZ-equivalence coincides with EA-equivalence:

- Boolean functions, m = 1. (Budaghyan and Carlet)
- Bent functions. (Budaghyan and Carlet)
- Two quadratic APN functions. (Yoshiara)
- ▶ A power function F is CCZ-equivalent to a power function F' iff F is EA-equivalent to F' or F'^{-1} . (for APN and p = 2 Yoshiara, any p and any power Dempwolff)
- A quadratic APN function is CCZ-equivalent to a power function iff it is EA-equivalent to one of the Gold functions. (Yoshiara)
- If n is even, a plateaued APN function is CCZ-equivalent to a plateaued power function iff it is EA-equivalent to it. (Yoshiara)

Cases when CCZ-equivalence differs from EA-equivalence:

• For functions from \mathbb{F}_2^n to \mathbb{F}_2^m with $m \ge 2$.

Equivalences of Boolean functions and codes

Let *F* be a vectorial Boolean function over \mathbb{F}_{2^n} then we can associate to *F* the linear code $\mathscr{C}_1(F)$ generated by

$$C_1(F) = \begin{bmatrix} 1 \\ x \\ F(x) \end{bmatrix}_{x \in \mathbb{F}_{2^n}} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 0 & u & \dots & u^{2^n - 1} \\ F(0) & F(u) & \dots & F(u^{2^n - 1}) \end{bmatrix}$$

Theorem (Browning, Dillon, Kibler, McQuistan)

Let F and G be two vectorial Boolean function over \mathbb{F}_{2^n} . Then, F is CCZ-equivalent to G iff $\mathscr{C}_1(F)$ is equivalent to $\mathscr{C}_1(G)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Equivalence of Boolean functions and codes

Let $\mathscr{C}_2(F)$ generated by

$$\mathcal{C}_2(F) = \left[egin{array}{ccc} 1 & 0 \ x & 0 \ F(x) & y \end{array}
ight]_{x\in \mathbb{F}_{2^n}, y\in \mathbb{F}_{2^n}^*}$$

Theorem (Edel, Pott)

Let F and G be two vectorial Boolean function over \mathbb{F}_{2^n} . Then, F is EA-equivalent to G iff $\mathscr{C}_2(F)$ is equivalent to $\mathscr{C}_2(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Equivalence of Boolean functions and codes Let $\mathscr{C}_3(F)$ generated by

$$C_{3}(F) = \begin{bmatrix} 1 & 0 & 0 \\ x & 0 & z \\ F(x) & y & 0 \end{bmatrix}_{x \in \mathbb{F}_{2^{n}}, y, z \in \mathbb{F}_{2^{n}}^{*}}$$

Theorem (Edel, Pott)

Let F and G be two vectorial Boolean function over \mathbb{F}_{2^n} . If F is not a permutation, then F is affine-equivalent to G iff $\mathscr{C}_3(F)$ is equivalent to $\mathscr{C}_3(G)$. If F is a permutation, then F is affine-equivalent to G or G^{-1} iff $\mathscr{C}_3(F)$ is equivalent to $\mathscr{C}_3(G)$.

Remark

If F is a permutation, we may not be able to distinguish whether F is equivalent to G or G^{-1} .

Equivalence of Boolean functions and codes

An extra code for the permutation case: Let $\mathcal{C}_4(F)$ generated by

$$C_4(F) = \left[egin{array}{cccc} 1 & 0 & 1 \ x & 0 & z \ F(x) & y & 0 \end{array}
ight]_{x,z \in \mathbb{F}_{2^n}, y \in \mathbb{F}_{2^n}^*}$$

Theorem

Let F and G be two permutations over \mathbb{F}_{2^n} , with $n \ge 3$. F is affine-equivalent to G iff $\mathscr{C}_4(F)$ is equivalent to $\mathscr{C}_4(G+b)$ for some $b \in \mathbb{F}_{2^n}$.

Classification of APN functions

- n = 3,4 full classification with respect to the affine equivalence of all permutations (Leander, Poschmann).
- n = 3,4 full classification with respect to the CCZ-equivalence and EA-equivalence of all functions over 𝔽_{2ⁿ} (Brinkmann).
- n ≤ 5 full classification of all APN functions with respect to the CCZ-equivalence and EA-equivalence (Brinkmann, Leander).
- n = 6 full classification of cubic APN functions with respect to the CCZ-equivalence (Langevin, Z. Saygi, E. Saygi).
- ► n ≤ 11 classification with respect to the CCZ-equivalence of APN functions from all known families of APN functions (Sun).

A procedure for investigating if $CCZ \stackrel{?}{=} EAI^1$

Let $L_1(x,y) = L(x) + R(y)$. $F_1(x) = L(x) + R(F(x))$ is a permutation iff any of its component is balanced. In terms of Walsh coefficients

(L^* is the adjoint operator)

¹Budaghyan, L., Calderini, M., Villa, I., On relations between CCZ- and EA-equivalences. Cryptogr. Commun. (2019)

We want to construct L^* and R^* so that F_1 is a permutation. Let $\mathscr{ZW}(b) = \{a \mid \mathscr{W}_F(a, b) = 0\}$ for any $b \in \mathbb{F}_{2^n}$ and consider

$$S_F = \{b : \mathscr{Z}\mathscr{W}(b) \neq \emptyset\}.$$

Note: if F_1 is a permutation then $Im(R^*) \subseteq S_F$. For constructing F_1 we need to consider the possible vector subspaces contained in S_F .

Construction of R^*

Let $U \subseteq S_F$ be a vector subspace. Fixed any basis $\{u_1, \ldots, u_k\}$ of U, we can suppose that $R^*(e_i) = u_i$ for $i = 1, \ldots, k$ and $\operatorname{Ker}(R^*) = \operatorname{Span}(e_{k+1}, \ldots, e_n)$. (e_i is the canonical vector.)

Fixed any basis $\{u_1, \ldots, u_k\}$ of U we can suppose that

$$R^* = \begin{bmatrix} u_1 \\ \vdots \\ u_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Construction of L^*

For any $a_1,...,a_k$ with $a_1 \in \mathscr{ZW}(u_1),...,a_k \in \mathscr{ZW}(u_k)$ we need to check if

(P1) $\sum_{i=1}^{k} \lambda_{i} a_{i} \in \mathscr{ZW}(\sum_{i=1}^{k} \lambda_{i} u_{i})$ with $\lambda_{i} \in \mathbb{F}_{2}$ not all zero. and if there exist $a_{k+1}, ..., a_{n}$ satisfying (P2) $a_{k+1}, ..., a_{n}$ are linear independent; (P3) for any $a \in Span(a_{k+1}, ..., a_{n})$, $a + \sum_{i=1}^{k} \lambda_{i} a_{i} \in \mathscr{ZW}(\sum_{i=1}^{k} \lambda_{i} u_{i})$, for any $\lambda_{1}, ..., \lambda_{k} \in \mathbb{F}_{2}$.

Then,

$$L^* = \left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right]$$

Functions in the same EA-class

Proposition (Budaghyan, Carlet, Pott)

For a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, if $\mathscr{L} = (L_1, L_2)$ and $\mathscr{L}' = (L_1, L_2')$ are linear permutations such that the function $L_1(x, F(x))$ is a permutation, then the functions defined by the graphs $\mathscr{L}(\Gamma_F)$ and $\mathscr{L}'(\Gamma_F)$ are EA-equivalent.

Thus, fixed L_1 , we need to construct just one L_2 .

Functions in the same EA-class

Proposition (Budaghyan, Carlet, Pott)

For a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, if $\mathscr{L} = (L_1, L_2)$ and $\mathscr{L}' = (L_1, L_2')$ are linear permutations such that the function $L_1(x, F(x))$ is a permutation, then the functions defined by the graphs $\mathscr{L}(\Gamma_F)$ and $\mathscr{L}'(\Gamma_F)$ are EA-equivalent.

Thus, fixed L_1 , we need to construct just one L_2 .

Proposition

Let F be a function over \mathbb{F}_{2^n} and let $\mathscr{L} = (L_1, L_2)$ and $\mathscr{L}' = (L'_1, L'_2)$ be two linear permutations over $(\mathbb{F}_{2^n})^2$ such that $F_1(x) = L_1(x, F(x))$ and $F'_1(x) = L'_1(x, F(x))$ are permutations. If $L'_1(x, y) = L \circ L_1(x, y)$ for some linear permutation L, then the functions defined by the graphs $\mathscr{L}(\Gamma_F)$ and $\mathscr{L}'(\Gamma_F)$ are EA-equivalent.

An upper bound

Corollary

Let F be a function defined over \mathbb{F}_{2^n} with $\mathcal{N}\ell(F) \neq 0$ (F(0) = 0). Let $\mathscr{C}(F)$ be the code generated by

$$\left(\begin{array}{c} x \\ F(x) \end{array} \right)_{x \in \mathbb{F}_{2^n}^*}$$

.

Let N_{sc} be the number of simplex codes in $\mathscr{C}(F)$. Then

#EA-classes $\leq N_{sc}$.

Obtaining the EA-classes

Proposition (Budaghyan, -, Villa)

Let U be a subspace contained in S_F . Then, there exists a permutation of \mathbb{F}_{2^n} $F_1(x) = L(x) + R \circ F(x)$, with L and R linear and $\text{Im}(R^*) = U$, if and only if the procedure applied to the space U is successful.

Proposition

Applying the procedure to all the subspace U contained in S_F , and considering all the L_1 's constructed by this procedure, we can obtain at least one representative for each EA-class contained in the CCZ-class of F.

- Use the procedure of Budaghyan, Calderini and Villa for obtaining at least one L₁ for any EA-class.
- ▶ If L_1 and L'_1 are s.t. the codes generate by $(L_1(x, F(x)))_{x \in \mathbb{F}_{2^n}}$ and $(L'_1(x, F(x)))_{x \in \mathbb{F}_{2^n}}$ are equal, then discard L'_1 .
- Construct one L_2 for any L_1 and the related function $F' = F_2 \circ F_1^{-1}$.

► Check the EA-equivalence of all *F*''s using code equivalence.

The case n=6

Over \mathbb{F}_{2^6} we have

▶ 14 APN functions (up to CCZ-equivalence) of degree at most 3;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

- 13 quadratics APN functions;
- 1 APN function CCZ-inequivalent to quadratic functions
- only one is equivalent to a permutation

EA-classes in dimension 6

Table: CCZ-inequivalent APN functions over $\mathbb{F}_{2^6} = \langle \zeta \rangle$

Ν.	function	# EA-classes	Degrees
1	x ³	3	{*2,3,4*}
2	$x^3 + \zeta^{11}x^6 + ux^9$	3	{* 2, 3, 4 *}
3	$\zeta x^5 + x^9 + \zeta^4 x^{17} + \zeta x^{18} + \zeta^4 x^{20} + \zeta x^{24} + \zeta^4 x^{34} + \zeta x^{40}$	19	$\{* 2, 3^{15}, 4^{3} *\}$
4	$\zeta^7 x^3 + x^5 + \zeta^3 x^9 + \zeta^4 x^{10} + x^{17} + \zeta^6 x^{18}$	13	{*2, 3 ^{^9} , 4 ^{^3} *}
5	$x^3 + \zeta x^{24} + x^{10}$	13	$\{*2, 3^{5}, 4^{7}, *\}$
6	$x^3 + \zeta^{17}(x^{17} + x^{18} + x^{20} + x^{24})$	91	<pre>{*2, 3⁶⁶, 4²</pre>
7	$x^3 + \zeta^{11}x^5 + \zeta^{13}x^9 + x^{17} + \zeta^{11}x^{33} + x^{48}$	19	$\{*2, 3^{15}, 4^{3} *\}$
8	$\zeta^{25}x^5 + x^9 + \zeta^{38}x^{12} + \zeta^{25}x^{18} + \zeta^{25}x^{36}$	85	{*2, 3 ^{^66} , 4 ^{^18} *}
9	$\zeta^{40}x^5 + \zeta^{10}x^6 + \zeta^{62}x^{20} + \zeta^{35}x^{33} + \zeta^{15}x^{34} + \zeta^{29}x^{48}$	91	{*2, 3 ^{^63} , 4 ^{^27} *}
10	$\zeta^{34}x^6 + \zeta^{52}x^9 + \zeta^{48}x^{12} + \zeta^6x^{20} + \zeta^9x^{33} + \zeta^{23}x^{34} + \zeta^{25}x^{40}$	91	<pre>{*2, 3⁶⁶, 4²</pre>
11	$x^9 + \zeta^4 (x^{10} + x^{18}) + \zeta^9 (x^{12} + x^{20} + x^{40})$	86	{*2, 3 ^{^69} , 4 ^{^16} *}
12	$\zeta^{52}x^3 + \zeta^{47}x^5 + \zeta x^6 + \zeta^9 x^9 + \zeta^{44}x^{12} + \zeta^{47}x^{33} + \zeta^{10}x^{34} + \zeta^{33}x^{40}$	92	<pre>{*2, 3⁶⁹, 4²² *}</pre>
13	$\zeta(x^6 + x^{10} + x^{24} + x^{33}) + x^9 + \zeta^4 x^{17}$	85	<pre>{*2, 3^{^66}, 4^{^18} *}</pre>
	$x^{3} + \zeta^{17}(x^{17} + x^{18} + x^{20} + x^{24}) + \zeta^{14}(tr(\zeta^{52}x^{3} + \zeta^{6} * x^{5} + \zeta^{19}x^{7} + \zeta^{28}x^{11} + \zeta^{2}x^{13}) +$		
14	$(\zeta^2 x)^9 + (\zeta^2 x)^{18} + (\zeta^2 x)^{36} + x^{21} + x^{42})$	25	{*3^^10, 4^^15 *}

Dillon's APN permutation

Theorem (Browning, Dillon, Kibler, McQuistan)

Let $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be APN, with F(0) = 0. F is CCZ equivalent to an APN permutation iff $\mathscr{C}(F)$ is a double simplex code (i.e. $\mathscr{C}(F) = C_1 \oplus C_2$ with C_i a $[2^n - 1, n, 2^{n-1}]$ -code).

If F is APN and $\mathscr{C}(F) = C_1 \oplus C_2 = \langle F_1(x) \rangle \oplus \langle F_2(x) \rangle$ is a double simplex code

$$\begin{array}{ccc} C_1\{ \begin{bmatrix} \dots & F_1(x) & \dots \\ \dots & F_2(x) & \dots \end{bmatrix} \right\} \mathscr{C}(F)$$

where $F_i(x) = L_i(x, F(x))$ (L_i linear map from \mathbb{F}_2^{2n} to \mathbb{F}_2^n)

 F_i 's are permutations of \mathbb{F}_{2^n} , thus F is CCZ-equivalent to $F_2 \circ F_1^{-1}$ which is an APN permutation.

Dillon's APN permutation

At the Fq9 conference (Dublin 2009), Dillon presented the construction of an APN permutation on $\mathbb{F}_{2^6}.$

Theorem (Browning, Dillon, McQuistan, Wolfe)

 $x^3 + \zeta x^{24} + x^{10}$ is CCZ-equivalent to an APN permutation.

- Consider the simplex codes contained in $\mathscr{C}(F)$.
- From any disjoint pairs of these simplex codes we can obtain a permutation.

▶ In total we can obtain 512 permutations.

Dillon's APN permutation

For all the APN permutations we have that the degree of their components are

{* 3[^]7, 4[^]56 *}

and the Walsh spectrum of the single components is given by the multi-set

Classification results for the Dillon's APN permutation

In the CCZ-class of $x^3 + \zeta x^{24} + x^{10}$ we have:

- 13 EA-classes;
- 2 of them contain a permutation;
- ▶ 4 affine-classes containing a permutation.

Remark

Checking affine equivalence using the code $C_3(F)$ permits to identify 3 classes. Using $C_4(F)$ it is possible to identify all the 4 classes. With $C_3(F)$ we cannot understand if a function is equivalent to its inverse or not.

The case of dimension 7 and 8

In dimension 7 there are 490 known APN functions. For dimension 8 there are 8180 known APN functions. $^{\rm 2}$

For dimension 7 and 8 the procedure for obtaining the L_1 s can be still implemented. However, checking EA-equivalence using the code equivalence seems to require to much time.

We can give an upper bound on the number of EA-classes counting the simplex codes in $\mathscr{C}(F)$.

²Yu, Yuyin, Mingsheng Wang, and Yongqiang Li, A matrix approach for constructing quadratic APN functions, Designs, codes and cryptography 73.2 (2014): 587-600 = $3 \times 20^{\circ}$

Ν.	function	$\#$ EA-classes \leq
1	x ³	256
2	x ⁵	256
3	x ⁹	256
4	x ¹³	2
5	x ⁵⁷	2
6	x ⁶³ (inverse)	2
7	$x^3 + tr(x^9)$	184
8	$x^{34} + x^{18} + x^5$	184

Ν.	function	$\# \text{ EA-classes} \leq$
9	$x^{20} + x^6 + x^3$	324
10	$x^{66} + x^{34} + x^{20} + x^{17} + x^3$	184
11	$x^{34} + x^{33} + x^{17} + x^3$	184
12	$x^{34} + x^{33} + x^{10} + x^5 + x^3$	296
13	$x^{66} + x^{18} + x^9 + x^3$	212
14	$x^{33} + x^{17} + x^{12} + x^3$	240
15	$x^{66} + x^{34} + x^{20} + x^3$	184
16	$x^{72} + x^{40} + x^{12} + x^3$	184
17	$x^{72} + x^{40} + x^{34} + x^6 + x^3$	184
18	$x^{34} + x^{33} + x^{12} + x^6 + x^5 + x^3$	240
19	$x^{72} + x^{40} + x^{34} + x^6 + x^3 +$	216
	$\zeta^{27}(tr(\zeta^{20}x^3+\zeta^{94}x^5+\zeta^{66}x^9))$	

~

³Y. Edel, and A. Pott, A new almost perfect nonlinear function which is not quadratic. Adv. in Math. of Comm. 3.1 (2009): 59-81.

Table: CCZ-inequivalent APN functions over \mathbb{F}_{2^8} given in [Edel, Pott (2009)].

Ν.	function	$\#$ EA-classes \leq
1	x ³	256
2	x ⁹	256
3	x ⁵⁷	1
4	$\zeta^{15}x^{48}+\zeta^{16}x^{33}+\zeta^{16}x^{18}+x^{17}+x^3$	256
5	$x^3 + Tr(x^9)$	256
6	$x^{9} + Tr(x^{3})$	256
7	$\zeta^{21}x^{144} + \zeta^{183}x^{66} + \zeta^{245}x^{33} + x^3$	256
8	$\zeta^{135}x^{144}+\zeta^{120}x^{66}+\zeta^{65}x^{18}+x^3$	256
9	$\zeta^{67}x^{192}+\zeta^{182}x^{132}+\zeta^{24}x^6+x^3$	256
10	$x^{160} + x^{132} + x^{80} + x^{68} + x^6 + x^3 \\$	464
11	$x^{66} + x^{40} + x^{18} + x^5 + x^3$	368
12	$x^{130} + x^{66} + x^{40} + x^{12} + x^3$	400

N.	function	$\# \; EA\text{-}classes \leq$
	$\zeta^{149}x^{162} + \zeta^{143}x^{144} + \zeta^{22}x^{132} + \zeta^{21}x^{129} + \zeta^{133}x^{96} + \zeta^{239}x^{72} + \zeta^{229}x^{66} + \zeta^{31}x^{46} +$	
13	$\zeta^{167}x^{36} + \zeta^{145}x^{33} + \zeta^{66}x^{24} + \zeta^{236}x^{16} + \zeta^{75}x^{12} + \zeta^{91}x^9 + \zeta^{97}x^6 + \zeta^{160}x^3$	256
	$\zeta^{100}x^{192} + \zeta^{12}x^{160} + \zeta^{15}x^{144} + \zeta^{243}x^{136} + \zeta^{234}x^{132} + \zeta^{33}x^{130} + \zeta^{39}x^{129} + \zeta^{139}x^{96} +$	
	$\zeta^{51} {}_X{}^{60} + \zeta^{229} {}_X{}^{72} + \zeta^{39} {}_X{}^{68} + \zeta^{17} {}_X{}^{66} + \zeta^{189} {}_X{}^{65} + \zeta^{126} {}_X{}^{46} + \zeta^{166} {}_X{}^{40} + \zeta^{238} {}_X{}^{36} + \zeta^{192}$	
14	$x^{34} + \zeta^{217} x^{33} + \zeta^{122} x^{24} + \zeta^{144} x^{20} + \zeta^{169} x^{18} + \zeta^{141} x^{17} + \zeta^{236} x^{12} +$	400
	$\zeta^{117}x^{30} + \zeta^{183}x^9 + \zeta^{184}x^6 + \zeta^{231}x^5 + \zeta^{228}x^3$	
15	$\zeta^{155}x^{192} + \zeta^{96}x^{144} + \zeta^{223}x^{132} + \zeta^{77}x^{129} + \zeta^{86}x^{96} + \zeta^{232}x^{72} + \zeta^{69}x^{66} + \zeta^{142}x^{46} +$	256
	$\zeta^{166}x^{36} + x^{33} + \zeta^{145}x^{24} + \zeta^{234}x^{16} + \zeta^{202}x^{12} + \zeta^{94}x^{9} + \zeta^{189}x^{6} + \zeta^{241}x^{3}$	
16	$\zeta^{126}x^{192} + \zeta^{119}x^{144} + \zeta^{221}x^{132} + \zeta^{222}x^{129} + \zeta^{79}x^{66} + \zeta^{221}x^{72} + \zeta^{187}x^{66} +$	256
	$\zeta^{146}x^{46} + \zeta^{167}x^{36} + \zeta^{237}x^{24} + \zeta^{231}x^{12} + \zeta^{119}x^9 + \zeta^{244}x^6 + \zeta^{236}x^3$	
17	$\zeta^{151}x^{192} + \zeta^{13}x^{144} + \zeta^{56}x^{132} + \zeta^{143}x^{129} + \zeta^{110}x^{66} + \zeta x^{72} + \zeta^{244}x^{66} + \zeta^{26}x^{46} + $	256
	$\zeta^{180}x^{36} + \zeta^{8}x^{33} + \zeta^{69}x^{24} + \zeta^{76}x^{18} + \zeta^{201}x^{12} + \zeta^{201}x^{9} + \zeta^{19}x^{6} + \zeta^{107}x^{3}$	
18	$\zeta^{86}x^{192} + \zeta^{224}x^{129} + \zeta^{163}x^{96} + \zeta^{102}x^{66} + \zeta^{129}x^{46} + \zeta^{102}x^{36} + \zeta^{170}x^{33} +$	256
	$\zeta^{14}x^{24} + \zeta^{170}x^{18} + \zeta^{101}x^{12} + \zeta^{58}x^6 + \zeta^{254}x^3$	
19	$\zeta^{95}x^{102} + \zeta^{242}x^{144} + \zeta^{195}x^{132} + \zeta^{96}x^{129} + \zeta^{84}x^{95} + \zeta^{45}x^{72} + \zeta^{234}x^{66} + \zeta^{232}x^{46} + \zeta^{105}x^{10} + \zeta^{105}x^{10$	256
	$\zeta^{159}x^{36} + \zeta^{58}x^{33} + \zeta^{23}x^{24} + \zeta^{146}x^{16} + \zeta^{230}x^{12} + \zeta^{32}x^{9} + \zeta^{54}x^{6} + \zeta^{41}x^{3}$	
20	$\zeta^{132}x^{192} + \zeta^{37}x^{144} + \zeta^{91}x^{132} + \zeta^{160}x^{129} + \zeta^{76}x^{96} + \zeta^{162}x^{72} + \zeta^{46}x^{66} + \zeta^{252}x^{46} + \zeta^{162}x^{16} + \zeta^{16}x^{16} + \zeta^{16}x^{1$	256
	$\zeta^{42}x^{36} + \zeta^{81}x^{33} + \zeta^{83}x^{24} + \zeta^{13}x^{18} + \zeta^{185}x^{12} + \zeta^{163}x^9 + \zeta^{216}x^6 + \zeta^{181}x^3$	
21	$\zeta^{91}x^{192} + \zeta^{124}x^{144} + \zeta^{214}x^{132} + \zeta^{106}x^{129} + \zeta^{59}x^{96} + \zeta^{172}x^{72} + \zeta^{138}x^{66} +$	256
	$\zeta^{163}x^{46} + \zeta^{56}x^{36} + \zeta^{100}x^{33} + \zeta^{32}x^{24} + \zeta^{250}x^{16} + \zeta^{45}x^{12} + \zeta^{241}x^6 + \zeta^{157}x^3$	
22	$\zeta^{25}x^{192} + \zeta^{149}x^{144} + \zeta^{59}x^{132} + \zeta^{129}x^{129} + \zeta^{42}x^{66} + \zeta^{164}x^{72} + \zeta^{149}x^{66} + \zeta^{119}x^{46} +$	256
	$\zeta^{74}x^{36} + \zeta^{211}x^{33} + \zeta^{9}x^{24} + \zeta^{46}x^{18} + \zeta^{130}x^{12} + \zeta^{185}x^{9} + \zeta^{147}x^{6} + \zeta^{27}x^{3}$	
23	$\zeta^{113}x^{192} + \zeta^{56}x^{144} + \zeta^{66}x^{132} + \zeta^{155}x^{129} + \zeta^{91}x^{96} + \zeta^{76}x^{72} + \zeta^{159}x^{66} + \zeta^{30}x^{46} + \zeta^{30}x^{46}$	256
	$\zeta^{194}x^{36} + \zeta^{14}x^{33} + \zeta^{238}x^{24} + \zeta^{91}x^{18} + \zeta^{100}x^{12} + \zeta^{96}x^9 + \zeta^{222}x^6 + \zeta^{178}x^3$	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = = -の��

The case of non-Gold APN power functions and the inverse function

Table: Over \mathbb{F}_{2^7} .

Tab	le:	Over	$\mathbb{F}_{2^{8}}$.
-----	-----	------	------------------------

Ν.	function	upper bound	# EA-classes
1	x ¹³	2	2
2	x ⁵⁷	2	1
3	$x^{63}(inverse)$	2	1

N.	function	upper bound	# EA-classes
1	x ⁵⁷	1	1
2	$x^{127}(inverse)$	2	1

Table: Over \mathbb{F}_{2^9} .

Ν.	function	upper bound	# EA-classes
1	x ¹³	2	2
2	x ¹⁹	2	2
3	x ²⁴¹	2	2
4	$x^{255}(inverse)$	2	1

Theorem

Let $n \leq 9$ and $F(x) = x^d$ be a non-Gold APN function defined over \mathbb{F}_{2^n} . Then the CCZ-class of F is partitioned in at most two EA-classes represented by F and F^{-1} (when exists).

Theorem (Li, Wang)

Let $n \ge 5$. The inverse function is EA-equivalent to a permutation if and only if it is affine equivalent to it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Theorem

Let $5 \le n \le 9$. A permutation polynomial F defined over \mathbb{F}_{2^n} is CCZ-equivalent to x^{-1} if and only if F is affine-equivalent to x^{-1} .

Thanks for your attention!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?