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Notations and definitions

PN and APN functions:

Let F:F) — F7 be a Vectorial Boolean function. We define
Or(a,b) = [{x € F5 : F(x+a)— F(x) = b}|.
The differential uniformity of F is

O(F)= ) b).
(F) aeIE‘g\r?Oa]:(beIFg" F(2.5)

If 6(F) =2"""™ then F is said Perfect Nonlinear (PN) or Bent.
Best resistance to differential attack.



K. Nyberg: Bent functions exist only when n is even and m < n/2.
If m=n, then 6(F) > 2.

If 6(F) =2, then F is called almost perfect nonlinear (APN).



AB functions:

The nonlinearity of a vectorial Boolean function F is the minimum
Hamming distance between

» all component functions v- F(x), v # 0 and
» all affine functions u-x+¢€, u e Fj € € F».
The nonlinearity can be given in terms of the Walsh transform of F
Vi(a.b)= Y ()70
xeF3

The nonlinearity equals:

NUF)=2""1— E max |#k(a,b)|.
aclFy,
beF7\{0}



Bounds on nonlinearity

NU(F)<2n=t_pn/2-1,

The equality holds iff F is bent (best resistance to linear attack).
If n = m the Sidelnikov-Chabaud-Vaudenay bound states

NUF) <212,

In case of equality (n necessarily odd) F is called almost bent (AB).
AB = APN

From now on, we assume that m = n. In this case we can identify [F5 with
Fan and then we can take x-y = tr(xy).



Table: Known APN power functions x? over Fon

Functions Exponents d Conditions | Degree
Gold 2041 ged(i,n)=1 2
Kasami 221 2741 ged(i,n)=1| i+l
Welch 2t +3 n=2t+1 3
Niho 2t 125 1, t even n=2t+1 %

2t4+2°3" —1, t odd t+1
Inverse 22t 1 n=2t+1 | n-1
Dobbertin | 24/ 23/ 422/ 4 27 1 n=>5j i+3
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Gold, Kasami, Welch and Niho functions are AB for n odd
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Two functions F, G : Fo» — Fon are EA-equivalent iff
G =Az0FoAi(x)+ A(x),
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Let T ={(x,f(x)) | x € Fan}.
Two functions F, G : Fan — Fan are CCZ-equivalent if and only if £ and
¢ are affine-equivalent, i.e. let % an affine permutation on (IFQn)2,

Z(TF)=T¢.



CCZ-equivalence

Let .# be a linear permutation of (IFan)? such that Z(F'f) =Tg.
% = (L1, L) for some linear Ly, Ly : (F2n)? — Fan. Then

Z(x,F(x)) = (F1(x), F2(x)),
where Fi(x) = Li(x,F(x)) and Fa(x) = La(x, F(x)).

ZL(Te)={(F(x),F2(x)) : x € Fan}.

Z(TE) is the graph of G iff the function F; is a permutation and
G=FoF*



If we want to construct G which can be obtained from F via
CCZ-equivalence:
» Find a permutation Li(x,F(x)) = L(x)+ Ro F(x) where L,R are
linear.

» Then find linear function Lp(x,y) = L'(x)+ R'(y) such that £ is a
permutation. (Found Lj then there always exists suitable L)



Relation between CCZ- and EA-equivalences

Cases when CCZ-equivalence coincides with EA-equivalence:

>

>

>

Boolean functions, m = 1. (Budaghyan and Carlet)
Bent functions. (Budaghyan and Carlet)
Two quadratic APN functions. (Yoshiara)

A power function F is CCZ-equivalent to a power function F’ iff F is
EA-equivalent to F’ or F’~1. (for APN and p = 2 Yoshiara, any p and
any power Dempwolff)

A quadratic APN function is CCZ-equivalent to a power function iff it
is EA-equivalent to one of the Gold functions. (Yoshiara)

If nis even, a plateaued APN function is CCZ-equivalent to a
plateaued power function iff it is EA-equivalent to it. (Yoshiara)

Cases when CCZ-equivalence differs from EA-equivalence:

>

For functions from 7 to FJ' with m > 2.



Equivalences of Boolean functions and codes

Let F be a vectorial Boolean function over Fon then we can associate to F
the linear code %1 (F) generated by

1 1 1 1
G(F)= X = 0 u -1
F(X) 1 er,, L F(O) F(u) F(u?1)

Theorem (Browning, Dillon, Kibler, McQuistan)

Let F and G be two vectorial Boolean function over Fon. Then, F is
CCZ-equivalent to G iff €1(F) is equivalent to €1(G).



Equivalence of Boolean functions and codes

Let 62(F) generated by

x€Fon ,yEIF;,,

Theorem (Edel, Pott)

Let F and G be two vectorial Boolean function over Fon. Then, F is
EA-equivalent to G iff €2(F) is equivalent to €>(G).



Equivalence of Boolean functions and codes
Let €3(F) generated by

0
C3(F): X 0
F(x) y

O N O

x€Fon,y,zeF5,

Theorem (Edel, Pott)

Let F and G be two vectorial Boolean function over Fon. If F is not a
permutation, then F is affine-equivalent to G iff ¢3(F) is equivalent to
¢3(G).

If F is a permutation, then F is affine-equivalent to G or G iff €3(F) is
equivalent to 63(G).

Remark

If F is a permutation, we may not be able to distinguish whether F is
equivalent to G or G 1.



Equivalence of Boolean functions and codes

An extra code for the permutation case: Let 44(F) generated by

1 01
G(F) = x 0 z
F(x) v O

x,zEFon, y R,

Theorem

Let F and G be two permutations over Fon, with n>3. F is

affine-equivalent to G iff €4(F) is equivalent to ¢4(G + b) for some
b€ Fon.



Classification of APN functions

» n= 3,4 full classification with respect to the affine equivalence of all
permutations (Leander, Poschmann).

» n = 3,4 full classification with respect to the CCZ-equivalence and
EA-equivalence of all functions over Fan (Brinkmann).

» n <5 full classification of all APN functions with respect to the
CCZ-equivalence and EA-equivalence (Brinkmann, Leander).

» n =6 full classification of cubic APN functions with respect to the
CCZ-equivalence (Langevin, Z. Saygi, E. Saygi).

» n <11 classification with respect to the CCZ-equivalence of APN
functions from all known families of APN functions (Sun).



A procedure for investigating if CCZ L EAl

Let Li(x,y) = L(x)+ R(y). Fi(x) = L(x)+ R(F(x)) is a permutation iff
any of its component is balanced.
In terms of Walsh coefficients

Pr(0,A)= Y (—1)frAHTARFR)) — 0 for all A € Fjn.

x€Fon
4
WFl(ka) — Z (_l)tr(L*(k)x+R*(l)F(x)) _ WF(L*(A), R*()L))
XEan

(L* is the adjoint operator)

lBudaghyan, L., Calderini, M., Villa, I., On relations between CCZ- and
EA-equivalences. Cryptogr. Commun. (2019)



We want to construct L* and R* so that F; is a permutation.
Let 2%/ (b) ={a| #¥(a,b) =0} for any b € Fan and consider

Se=1{b: ZW(b)+0).

Note: if F; is a permutation then Im(R*) C Sf.

For constructing F; we need to consider the possible vector subspaces
contained in Sf.



Construction of R*

Let U C Sk be a vector subspace. Fixed any basis {u1,...,ux} of U, we
can suppose that R*(e;) = u; for i =1,...,k and

Ker(R*) = Span(ek+1, ..., €n).

(ei is the canonical vector.)

Fixed any basis {u1,...,ux} of U we can suppose that
]
* ug
R* =
0
- 0 -




Construction of L*

For any ai,...,ax with a; € Z# (u1),...,ax € Z# (ux) we need to check if

(P1) Yk | Ajaj € 7/ (X)X, Aju;) with A; € F3 not all zero.
and if there exist ax1,...,a, satisfying
(P2) ak41,...,an are linear independent;

(P3) for any a € Span(aky1,..,an), a+ Xk diai € ZW (LK, Aiu;), for
any ll,...,ﬁ,k e F,.

Then,

L=



Functions in the same EA-class

Proposition (Budaghyan, Carlet, Pott)

For a function F :Fan — Fon, if £ = (L1,L2) and £' = (L1,L,) are linear
permutations such that the function Li(x, F(x)) is a permutation, then the
functions defined by the graphs £ (T'r) and £'(I'F) are EA-equivalent.

Thus, fixed L1, we need to construct just one L.



Functions in the same EA-class

Proposition (Budaghyan, Carlet, Pott)

For a function F :Fan — Fon, if £ = (L1,L2) and £' = (L1,L,) are linear
permutations such that the function Li(x, F(x)) is a permutation, then the
functions defined by the graphs £ (T'r) and £'(I'F) are EA-equivalent.
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Let F be a function over Fan and let £ = (L1, L) and " = (L}, L)) be
two linear permutations over (Fan)? such that Fi(x) = Li(x, F(x)) and
F{(x) = L}(x,F(x)) are permutations. If Li(x,y) = Lo Li(x,y) for some
linear permutation L, then the functions defined by the graphs £ (I'r) and
Z'(Tg) are EA-equivalent.



An upper bound

Corollary
Let F be a function defined over Fan with 4/ ¢(F)#0 (F(0)=0). Let
% (F) be the code generated by

( FE(X) )xEan'

Let Ny be the number of simplex codes in €(F). Then

# EA-classes < Ng..



Obtaining the EA-classes

Proposition (Budaghyan, -, Villa)

Let U be a subspace contained in Sg. Then, there exists a permutation of
Fan Fi(x) = L(x)+ Ro F(x), with L and R linear and Im(R*) = U, if and
only if the procedure applied to the space U is successful.

Proposition

Applying the procedure to all the subspace U contained in Sk, and
considering all the L;'s constructed by this procedure, we can obtain at
least one representative for each EA-class contained in the CCZ-class of F.



Obtaining the EA-classes

v

Use the procedure of Budaghyan, Calderini and Villa for obtaining at
least one Ly for any EA-class.

v

If L; and L] are s.t. the codes generate by (Li(x, F(x)))xer,, and
(L5 (x,F(x)))xer,. are equal, then discard L.

v

Construct one L, for any Ly and the related function F' = F, o0 Fl_l.

v

Check the EA-equivalence of all F’’s using code equivalence.



The case n=6

Over Fy we have
» 14 APN functions (up to CCZ-equivalence) of degree at most 3;
» 13 quadratics APN functions;
» 1 APN function CCZ-inequivalent to quadratic functions

> only one is equivalent to a permutation



EA-classes in dimension 6

Table: CCZ-inequivalent APN functions over Fys = ({)

‘ N. ‘ function H # EA-classes ‘ Degrees
1 x3 3 {*2,3,4x}
2 X34 {0 4 ux® 3 {x 2, 3, 4 *}
3 Ex5 450+ CAx1T x84 0420 1+ Ex?4 4 045+ (x* 19 {x 2, 3°°15, 4°"3 %}
4 L7533 455+ 0350+ £4x10 4 x17 4 (618 13 {x2, 3°"9, 4°°3 x}
5 X34 {x? - x10 13 {*2, 3775, 4°°7 %}
6 X34 T (X7 4 X184 x20 4 x24) o1 {¥2, 3°"66, 4°"24 *}
7 X3+§11X5+é13X9+X17+gllx33+X48 19 {*2’ 3~"15, 4°"3 *}
8 §25X5+X9+c38X12+525X18+§25X35 85 {*2’ 3-"66, 4°"18 *}
9 CH0,5 4 (10,6 (62,20 | (35,33 { (15,34 29,48 o1 {x2, 363, 427 *}
10 §34x6+§52x9+§48x12+(:6x20+§9x33+§23x34+§25x40 91 {*2' 3°"66, 424 *}
11 X0+ L0+ x18) + {0 (x12 4+ x4 x40) 86 {*2, 37769, 4°°16 *}
12 €52X3+§47X5+§X6+§g)(9+§44X12+c47>(33+€10><34+€33X4D 92 {*2’ 3°"69, 4°°22 *}
13 S(xO+x10 4 X2 +x33) 4 X%+ §4x17 85 {*2, 37766, 4°"18 *}

X3+ C17 (7 4 x18 4 x20 4 x2) 4 14 (r(£52x3 + L6 45 + (107 + {2Bx1 1+ (2x13)

14 (£2X)° + (£2x)18 4+ (£2x)30 4 X2+ x*2) 25 {*3°°10, 4""15 *}




Dillon’'s APN permutation

Theorem (Browning, Dillon, Kibler, McQuistan)

Let F :Fan — Fon be APN, with F(0) =0. F is CCZ equivalent to an
APN permutation iff €(F) is a double simplex code (i.e. €(F)= C & G
with C; a [2" —1,n,2"]-code).

If Fis APN and ¢(F) = G ® G = (F1(x)) @ (F2(x)) is a double simplex

code
e RIG

where F;(x) = Li(x, F(x)) (L; linear map from F3" to F3)

F;'s are permutations of Fan, thus F is CCZ-equivalent to Fpo Fl_1 which
is an APN permutation.



Dillon’'s APN permutation

At the Fq9 conference (Dublin 2009), Dillon presented the construction of
an APN permutation on Fys.

Theorem (Browning, Dillon, McQuistan, Wolfe)

x3 4 ¢x?* +x10 js CCZ-equivalent to an APN permutation.

» Consider the simplex codes contained in €(F).

» From any disjoint pairs of these simplex codes we can obtain a
permutation.

» In total we can obtain 512 permutations.



Dillon’'s APN permutation

For all the APN permutations we have that the degree of their
components are

{* 3°°7, 4°°56 *}

and the Walsh spectrum of the single components is given by the multi-set

{*
{x -16, -87"22, 0°"12, 87726, 16°"3 *}""21,
{* -16""2, -87720, 07712, 87728, 16772 *}""21,
{* -16°"3, -8°"18, 0°"12, 8°°30, 16 *}~"7,
{* -16""6, 07748, 167710 *}"°7,
{x -87724, 0712, 87724, 16""4 x}~°7



Classification results for the Dillon’s APN permutation

In the CCZ-class of x3+ {x?** + x19 we have:
> 13 EA-classes;
» 2 of them contain a permutation;

> 4 affine-classes containing a permutation.

Remark

Checking affine equivalence using the code €3(F) permits to identify 3
classes. Using €4(F) it is possible to identify all the 4 classes. With €3(F)
we cannot understand if a function is equivalent to its inverse or not.



The case of dimension 7 and 8

In dimension 7 there are 490 known APN functions. For dimension 8 there
are 8180 known APN functions. 2

For dimension 7 and 8 the procedure for obtaining the Lis can be still
implemented. However, checking EA-equivalence using the code
equivalence seems to require to much time.

We can give an upper bound on the number of EA-classes counting the
simplex codes in €'(F).

2Yu, Yuyin, Mingsheng Wang, and Yonggiang Li, A matrix approach for constructing
quadratic APN functions, Designs, codes and cryptography 73.2.(2014): 587-600



Table: CCZ-inequivalent APN functions over F,7 given in [Edel, Pott (2009)]3

‘ N. ‘ function H # EA-classes < N. function # EA-classes <

9 X204 x5 4 x3 324
1 x3 256 101 X B T 4 16
2 X3 256 11 X3 x4 x3 184
o 12 X34 x4 X104 x5 4 x3 296
3 X 256 13 X004 x18 4 x9 4 x3 212
4 x13 2 14 X34 x1T 4 x12 4 53 240
5 X57 2 15 X060 4334 1 x20 453 184
16 X724 x40 4 x12 4 53 184
6 | x%(inverse) 2 17| x4 x a3 g6 43 184
7 34 tr(Xg) 184 18 | X3 +xB x4 x0 x5 43 240
19 | x4 x%0 4534 4 x84 x34 216

8 | x3*4+x184x5 184 27 (£r(£20x3 + {945 4 £96x9))

3Y. Edel, and A. Pott, A new almost perfect nonlinear function which is not
quadratic. Adv. in Math. of Comm. 3.1 (2009): 59-81.



Table: CCZ-inequivalent APN functions over Fys given in [Edel, Pott (2009)].

N function # EAclasses <
N. function # EA-classes < IR (A (P L (B (1 (I (P (e
1 107,364 195,35 L8828 | (29,08 (Tox12 (9130 4 (0T84 (160, 26
1 3 256 IR Ty {15108 1 (0,19 | BTN TR0 (0T {0y
5L T 0 LTS8 | 109,05 (1280 {190, 00  £238,36 152
2 ) 256 1 LT g e i T (R 0
= 00 {183,914, 4 (2915 (8,
3 X 1 O B e I N < T P
545 6.3 rl61s L7 3 109,056 | 30| Q1SN IS | L2028 L1948 | 21,3
4 | ExE0 4 L0 4 FI0I T 4 x 256 I T I D I T 7%
5 4T 256 LS (107,90 2 (02 (119,02 4 (10,
7 AR S T L T R L {0, {72 L [ (R prrs
6 X+ Tr(x3) 256 190,951 0 09,24 LTS (O [0S (19,6 (10T,
I PRI (AT (Iony0 (0 (1Bt (00 {0y s
7| ganiee pae3,06 | (205,333 256 )
10| TR (IR (A (e (R0 TR (B (R pres
8 §130x 144 4 (120,66 4 p65518 1 53 256 19,055 4 £50, 4 B0 [MIE | [I012 L [0 4 {5848 4 3
67 102 . F182.132 L 7246 L .3 20| TR 1 I (9L (I L1600 {10TE (R0 1 By 7
9 | x4 {102% 4 24504 256 AT
10| X160 4 132 80 L (68 6 3 164 Pl TTAITR  (10y 1Ay 15T L {00180 L {58, 0  {172,T2 L [T Z0
16,00 | {50,354 (100,30 | 320 (01D, L4512 | 2L 4 (15T,
11 X064 x40 | 18 (5 3 368 22| TR QORI {59 1 (I (e [Ty (I, (T, 256
e 3 P40 L2 4 (O [R50 4 (V2 (I8 L1475 4 0,3
12 X130 4 X004 x40 4 12 4 x 400 23| Q119 1 5619 1 [0 L {15512 (91,06 ¢ (70,72 1 (19050 [0y 256
190,35 [16,30 (R [OLI8 4 LU0 | 960 4 [IL6 | (NS




The case of non-Gold APN power functions and the inverse

function

Table: Over Fy7.

function

upper bound

# EA-classes

X13

2

2

=

Table: Over Fys.

Table: Over Fyo.

function

upper bound

# EA-classes

x57

2

1

function

57

upper bound

# EA-classes

X13

2

x93 (inverse)

2

1

X

1

1

19

Theorem

N}

X2 (inverse)

2

1

ENIRTNENE =

X
X241

x5 (inverse)

[SEESEENREN

2
2
1

Let n <9 and F(x) = x? be a non-Gold APN function defined over Fan.
Then the CCZ-class of F is partitioned in at most two EA-classes
represented by F and F~1 (when exists).




Theorem (Li, Wang)

Let n > 5. The inverse function is EA-equivalent to a permutation if and
only if it is affine equivalent to it.

Theorem

Let 5 < n<9. A permutation polynomial F defined over Fan is
CCZ-equivalent to x1 if and only if F is affine-equivalent to x 1.



Thanks for your attention!



