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APN and AB Functions

Almost perfect nonlinear (APN) and almost bent (AB) functions

are vectorial Boolean functions optimal for primary
cryptographic criteria (differential and linear
cryptanalyses);

are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

are "HARD-TO-GET" - there are only a few known
constructions (12 AB, 17 APN);

are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Main results of CCZ-paper

Upper bound on algebraic degrees of AB functions

Property of stability for APN and AB functions

Quadratic APN for odd dimensions implies AB

Characterisation of APN and AB functions via Boolean
function γ

Characterisation of APN and AB functions via codes
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Main problems inspired by CCZ-paper

Upper bound on algebraic degrees of APN functions [B.,
Carlet, Helleseth, Li 2016]

New equivalence relations invariant for APN and AB
properties

For every AB function F , existence of linear L such that
F + L is a permutation [B., Carlet, Pott 2005]

Existence of quadratic AB functions different from Gold
power maps [B., Carlet, Leander 2006]

Finding γ functions for known APN and AB functions [B.,
Carlet, Helleseth 2011]

Existence of APN permutations for even dimensions [Dillon
et al 2009]
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Univariate representation and algebraic degree

The univariate representation of an (n,m)-function
F : F2n → F2m for m|n:

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

The univariate degree of F is the degree of its univariate
representation.
Algebraic degree of F

d◦(F ) = max
0≤i<2n,ci 6=0

w2(i),

where w2(i) is the binary weight of i .
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Trace and Component functions

Trace function from F2n to F2m for m|n:

trm
n (x) =

n/m−1∑
i=0

x2im
.

Absolute trace function:

trn(x) = tr1
n (x) =

n−1∑
i=0

x2i
.

For F : F2n → F2m and v ∈ F∗2m

trm(vF (x))

is a component function of F .

7 / 38



Differential Uniformity and APN Functions

Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.

F : F2n → F2n is differentially δ-uniform if

F (x + a) + F (x) = b, ∀a ∈ F∗2n , ∀b ∈ F2n ,

has at most δ solutions.

Differential uniformity measures the resistance to
differential attack [Nyberg 1993].

F is almost perfect nonlinear (APN) if δ = 2.
APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
Gold function x2i+1 on F2n with gcd(i ,n) = 1;
Inverse function x2n−2 on F2n with n odd.
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Nonlinearity of Functions

Linear cryptanalysis was discovered by Matsui in 1993.

Distance between two Boolean functions:

d(f ,g) = |{x ∈ F2n : f (x) 6= g(x)}|.

Nonlinearity of F : F2n → F2m :

NF = min
a∈F2n ,b∈F2,v∈F∗2m

d(trm(v F (x), trn(ax) + b)

Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].
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Bent and Almost Bent Functions

NF ≤ 2n−1 − 2n/2−1 for an (n,m)-function F .
Functions achieving the bound are called bent.
They exist iff n is even and m ≤ n/2.

If m = n then NF ≤ 2n−1 − 2
n−1

2 .
Functions achieving the bound are called almost bent (AB).
They exist only for n odd.

AB functions are optimal for linear cryptanalysis.

F is maximally nonlinear if n = m is even and
NF = 2n−1 − 2

n
2 (conjectured optimal).
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AB Functions

If F is AB then it is APN.
If n is odd and F is quadratic APN then F is AB [CCZ].

Algebraic degrees of AB functions are upper bounded by
n+1

2 [CCZ].

First example of AB functions:

Gold functions x2i+1 on F2n with gcd(i ,n) = 1, n odd;

Gold APN functions with n even are not AB;

Inverse functions are not AB.
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Importance of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties
(APN and AB) divide the set of all functions into classes.

They can be powerful construction methods providing for
each function a huge class of functions with the same
properties.

Instead of checking invariant properties for all functions, it
is enough to check only one in each class.
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Cyclotomic, Linear, Affine, EA- and EAI- Equivalences

F and F ′ are affine (resp. linear) equivalent if

F ′ = A1 ◦ F ◦ A2

for some affine (resp. linear) permutations A1 and A2.

F and F ′ are extended affine equivalent (EA-equivalent) if

F ′ = A1 ◦ F ◦ A2 + A

for some affine permutations A1 and A2 and some affine A.

F and F ′ are EAI-equivalent if F ′ is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

Functions xd and xd ′ over F2n are cyclotomic equivalent if
d ′ = 2i · d mod (2n − 1) or, d ′ = 2i/d mod (2n − 1) (if
gcd(d ,2n − 1) = 1).
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Invariants and Relation Between Equivalences

Linear equivalence ⊂ affine equivalence ⊂ EA-equivalence
⊂ EAI-equivalence.

Cyclotomic equivalence ⊂ EAI-equivalence.

APNness, ABness and resistance to algebraic attack are
preserved by EAI-equivalence.

Algebraic degree is preserved by EA-equivalence but not
by EAI-equivalence.

Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAI-equivalences).

14 / 38



Known AB power functions xd on F2n

Functions Exponents d Conditions on n odd

Gold (1968) 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami (1971) 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch (conj.1968) 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

(conjectured in 1972) 2m + 2
3m+1

2 − 1, m odd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Known APN power functions xd on F2n

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 2n−1 − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m

This list is up to cyclotomic equivalence and is conjectured
complete (Dobbertin 1999).
For n even the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with
n = 8.
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Open problems in the beginning of 2000

All known APN functions were power functions up to
EA-equivalence.

Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:
1 Existence of APN polynomials (EA-)inequivalent to power

functions.

2 Existence of APN permutations over F2n for n even.

First example for Problem 1 [B., 2003]:

F ∗(x) = x14 + x13 + x12 + x11 + x10 + x9 + x7 + x6 + x5

over F16.
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Another equivalence?

Property of stability [CCZ]
Let F be APN (resp. AB) on F2n and L1, L2 be affine functions
from F2

2n to F2n . If (L1,L2) is a permutation on F2
2n and

F1(x) = L1(x ,F (x)) is a permutation on F2n then, F2 ◦ F−1
1 is

APN (resp. AB), where F2(x) = L2(x ,F (x)).
EAI-equivalence is a particular case of property of stability.

At YACC 2004 Canteaut, Carlet, Dobbertin were aware of the
example F ∗ (independently found by Knutsen) and searching
for its infinite family.

The property of stability was "rediscovered" by Breveglieri,
Cherubini, Macchetti (Asiacrypt 2004).
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CCZ-Equivalence

The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n}.

F and F ′ are CCZ-equivalent if L(GF ) = GF ′ for some affine
permutation L of F2n × F2n [B., Carlet, Pott 2005].

CCZ-equivalence
preserves differential uniformity, nonlinearity, and
resistance to algebraic attack.

is more general than EAI-equivalence [BCP 2005].

was used to solve the problems:

There exist AB functions EA-inequivalent to any
permutation [B., Carlet, Pott 2005].
For n even there exist APN permutations for n = 6 [Dillon et
al. 2009].
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First Classes of APN Maps EAI-ineq. to Monomials

APN and AB functions CCZ-equivalent to Gold functions and
EAI-inequivalent to power functions on F2n [BCP 2005].

Functions Conditions

n ≥ 4

x2i+1 + (x2i
+ x + trn(1) + 1)trn(x2i+1 + x trn(1)) gcd(i, n) = 1

6|n
[x + tr3

n(x2(2i+1) + x4(2i+1)) + trn(x)tr3
n(x2i+1 + x22i (2i+1))]2

i+1 gcd(i, n) = 1

m 6= n

x2i+1 + trm
n (x2i+1) + x2i

trm
n (x) + x trm

n (x)2i
n odd

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

1
2i+1 (x2i

+ trm
n (x)2i

+ 1) m|n

+[trm
n (x)2i+1 + trm

n (x2i+1) + trm
n (x)]

2i

2i+1 (x + trm
n (x)) gcd(i, n) = 1

The first function F is AB such that F + L is not a permutation
for any linear L.

An AB function is not necessarily EA-equivalent to a
permutation.
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Relation Between Equivalences

Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent [Dempwolff; Yoshiara 2018].

For Gold APN monomials and quadratic APN polynomials
CCZ>EAI [B., Carlet, Pott 2005; B., Carlet, Leander 2009].

CCZ=EAI for non-quadratic power APN with n ≤ 7 [B.,
Calderini, Villa 2019].

CCZ>EAI for non-power non-quadratic APN functions [B.,
Calderini, Villa 2019].
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CCZ- and EA- Equivalences

Cases when CCZ-equivalence coincides with EA-equivalence:
Boolean functions [B., Carlet 2009].
All bent functions [B., Carlet 2009].
Two quadratic APN functions [Yoshiara 2012].
A quadratic APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to one of the Gold functions
[Yoshiara 2018].

Cases when CCZ-equivalence differs from EA-equivalence:
For functions from Fn

2 to Fm
2 with m ≥ 2 [B., Carlet 2009;

Pott, Zhou 2013].
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CCZ-construction of Bent Functions

Although for bent functions CCZ -and EA-equivalences
coincide, constructing new bent functions using
CCZ-equivalence is possible [B., Carlet 2011].

A few infinite families of bent Boolean and vectorial functions
are constructed by applying CCZ-equivalence to non-bent
vectorial functions with bent components.

Example F ′(x) = x2i+1 + (x2i
+ x + 1)trn(x2i+1) and

F (x) = x2i+1 are CCZ-equivalent on F2n .
f (x) = trn(bF ′(x)) is cubic bent when n/gcd(n, i) even,
b ∈ F2n \F2i s.t. neither b nor b + 1 are (2i + 1)-th powers.
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Big APN problem

Do APN permutations exist for n even?

Negative results:
no for quadratics [Nyberg 1993],
no for F ∈ F24 [x ] if n/2 is even [Hou 2004],
no for F ∈ F2n/2 [x ] [Hou 2004].
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CCZ-construction of APN permutation for n even

The only known APN permutation for n even [Dillon et al 2009]:
Applying CCZ-equivalence to quadratic APN on F2n with
n = 6 and c primitive

F (x) = x3 + x10 + cx24

obtain a nonquadratic APN permutation
c25x57+c30x56+c32x50+c37x49+c23x48+c39x43+ c44x42+
c4x41+c18x40+c46x36+c51x35+c52x34+ c18x33+c56x32+
c53x29+c30x28+cx25+c58x24+ c60x22+c37x21+c51x20+
cx18 + c2x17 + c4x15 + c44x14 + c32x13 + c18x12 + cx11 +
c9x10 + c17x8 + c51x7 + c17x6 + c18x5 + x4 + c16x3 + c13x

Problem Find APN permutations for n ≥ 8 even.
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The first APN and AB classes CCZ-ineq. to Monomials

Let s, k ,p be positive integers such that n = pk , p = 3,4,
gcd(k ,p) = gcd(s,pk) = 1 and α primitive in F∗2n . Then

x2s+1 + α2k−1x2−k+2k+s

is quadratic APN on F2n and, if n is odd then it is an AB
permutation [B., Carlet, Felke, Leander 2006; B., Carlet,
Leander 2008].

This binomials solved an open problem from CCZ-paper
on existence of quadratic AB functions inequivalent to Gold
functions.
These binomials and Gold maps are the the only known
quadratic AB permutations.
Among all 480 known quadratic AB functions with n = 7,
only Gold maps are CCZ-equivalent to permutations [Yu
2018].
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Known APN families CCZ-ineq. to power functions

All are quadratic.
All have the same optimal nonlinearity and for n odd they
are AB.
In general, these families are pairwise CCZ-inequivalent.
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Representatives of APN polynomial families n ≤ 12

Infinite families are identified for
only 3 out of 13 quadratic APN functions of F26 ;
only 4 out of more than 480 quadratic APN of F27 ;
only 6 out of more than 8000 quadratic APN of F28 .

28 / 38



APN Polynomial CCZ-Ineq. to Monomials and
Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

x3 + c17(x17 + x18 + x20 + x24)+

c14(tr6(c52x3 + c6x5 + c19x7 + c28x11 + c2x13)+

tr3(c18x9) + x21 + x42)
where c is some primitive element of F26 [Leander et al, Edel et
al. 2008].

No infinite families known.
No AB examples known.
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Classification of APN Functions

Leander et al 2008:

CCZ-classification finished for:
APN functions with n ≤ 5 (there are only power functions).

EA-classification is finished for:
APN functions with n ≤ 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).
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Commutative semifields

S = (S,+, ?) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

F : Fpn → Fpn is planar (p odd) if

F (x + a)− F (x), ∀a ∈ F∗pn ,

are permutations.
There is one-to-one correspondence between quadratic
planar functions and commutative semifields [Coulter,
Henderson 2008].

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].
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Yet another equivalence?

Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].

If quadratic planar functions F and F ′ are isotopic
equivalent then F ′ is EA-equivalent to

F (x + L(x))− F (x)− F (L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].

Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:

F (x + L(x))− F (x)− F (L(x))

where linear L and F an APN function.

It is not equivalence but a powerful construction method:
a new infinite family of quadratic APN functions;
for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions?
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Equivalence more general than CCZ-equivalence?

The indicator of the graph GF of F : Fn
2 → Fm

2 :

1GF (x , y) =
{

1 if y = F (x)
0 otherwise

.

F and F ′ are CCZ-equivalent iff 1GF ′
= 1GF ◦ L for some

affine permutation L.

F and F ′ are CCZ-equivalent iff 1GF and 1GF ′
are

CCZ-equivalent [B., Carlet 2010].

Currently CCZ-equivalence is the most general known
equivalence relation preserving APN property.
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Characterization of APN and AB functions

Let F : F2n → F2n and a,b ∈ F2n , define γF : F2
2n → F2 as

γF (a,b) =
{

1 if a 6= 0 and F (x + a) + F (x) = b has solutions,
0 otherwise.

CCZ; B., Carlet, Helleseth 2011:
F is APN iff γF has weight 22n−1 − 2n−1.
F is AB iff γF is bent.
γF is determined for C1-C6 and all APN monomials except
Dobbertin’s.
For nonquadratic AB cases found γF provide potentially
new bent functions.
If F and F ′ are CCZ-equivalent then γF ′ = γF ◦ L for some
affine permutation L.

All affine invariants for γF are CCZ-invariants for F .
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Bounds on algebraic degree of APN and AB functions

If F is AB over F2n then

d◦(F ) ≤ n + 1
2

[CCZ].
The bound is reachable (for example, the inverses of Gold
functions [Nyberg 1993]).

Bound on algebraic degree of APN?
For n odd the inverse APN function has algebraic degree
n − 1.
For n even Dobbertin function has algebraic degree
n/5 + 3.
Kasami functions have algebraic degree i + 1 for
i ≤ n/2− 1, gcd(n, i) = 1.
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APN functions of algebraic degree n

B., Carlet, Helleseth, Li 2016:

Conjecture 1 There exists no APN function over F2n of
algebraic degree n for n ≥ 3.

This conjecture is true for n ∈ {3,4,5}.
x2n−1 + F (x) is not APN for most of the known APN
functions F over F2n .

It implies for most of the known APN functions the following
conjecture is true.

Conjecture 2 If n ≥ 3 and F ′ is a function over F2n obtained
from an APN function F by changing its value in one point then
F ′ is not APN.
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Changing multiple points in APN functions

Changing two points [Kaleyski 2019]:

F ′(x) = x2n−1 + (x + 1)2n−1 + F (x)

If F is AB and n ≥ 5 then F ′ is not AB.
For n = 4 minimum distance between APN functions is 2.

Problem What is minimum number of points two APN (resp.
AB) functions can differ.

Distance between known APN functions tends to grow with n
[B., Carlet, Helleseth, Kaleyski 2019]. d(F ,G) ≥ 1+⌈

1
3

min
b,β∈F2n

|{a ∈ F2n : (∃x ∈ F2n)(F (x) + F (a + x) + F (a + β) = b)}|
⌉
.

For n = 5 a low bound for distance between all APN
functions is 4 (tight or not is not known).
For n = 6 a low bound for distance between all known APN
functions is 6; for n = 7 is 19; for n = 8 is 24.
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