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APN and AB Functions

Almost perfect nonlinear (APN) and almost bent (AB) functions

@ are vectorial Boolean functions optimal for primary
cryptographic criteria (differential and linear
cryptanalyses);

@ are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

@ are "HARD-TO-GET" - there are only a few known
constructions (12 AB, 17 APN);

@ are "HARD-TO-PREDICT" - most conjectures are proven
to be false.



Main results of CCZ-paper

@ Upper bound on algebraic degrees of AB functions
@ Property of stability for APN and AB functions
@ Quadratic APN for odd dimensions implies AB

@ Characterisation of APN and AB functions via Boolean
function ~

@ Characterisation of APN and AB functions via codes



Main problems inspired by CCZ-paper

@ Upper bound on algebraic degrees of APN functions [B.,
Carlet, Helleseth, Li 2016]

@ New equivalence relations invariant for APN and AB
properties

@ For every AB function F, existence of linear L such that
F + L is a permutation [B., Carlet, Pott 2005]

@ Existence of quadratic AB functions different from Gold
power maps [B., Carlet, Leander 2006]

@ Finding v functions for known APN and AB functions [B.,
Carlet, Helleseth 2011]

@ Existence of APN permutations for even dimensions [Dillon
et al 2009]



Univariate representation and algebraic degree

The univariate representation of an (n, m)-function
F : Fon — Fom for m|n:

F(x)=>_ cx', ¢ €Fan.

The univariate degree of F is the degree of its univariate
representation.
Algebraic degree of F

d°(F) = x (i),

= ma
0<i<2M, ¢;#0

where wy (i) is the binary weight of /.



Trace and Component functions

Trace function from Fan to Fom for m|n:

Absolute trace function:

n—1
tra(x) = try(x) = Y x*.
i=0
For F : Fon — Fom and v € F3,

trm(vF(x))

is a component function of F.



Differential Uniformity and APN Functions

@ Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.

@ F:Fon — Fon is differentially 5-uniform if
F(x+a)+ F(x) = b, Vae Fs,, Vb e Fon,
has at most ¢ solutions.

@ Differential uniformity measures the resistance to
differential attack [Nyberg 1993].

@ Fis almost perfect nonlinear (APN) if 6 = 2.
@ APN functions are optimal for differential cryptanalysis.

First examples of APN functions [Nyberg 1993]:
@ Gold function x2+' on Fan with ged(i, n) = 1;
@ Inverse function x2"~2 on Fan with n odd.



Nonlinearity of Functions

@ Linear cryptanalysis was discovered by Matsui in 1993.

@ Distance between two Boolean functions:

d(f,g) = {x € Fan : f(x) # g(x)}-

@ Nonlinearity of F : Fon — Fom:
NE = min d(trm(v F(x), tra(ax) + b)

a€lon,belFs, vEF;m

@ Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].



Bent and Almost Bent Functions

@ Ng <271 —27/2=1 for an (n, m)-function F.
Functions achieving the bound are called bent.
They exist iff nis even and m < n/2.
o If m=nthen Np <271 _ 2%
Functions achieving the bound are called almost bent (AB).
They exist only for n odd.

@ AB functions are optimal for linear cryptanalysis.

@ F is maximally nonlinear if n = mis even and
Nr = 2"-1 — 22 (conjectured optimal).



AB Functions

@ If Fis ABthenitis APN.
@ If nis odd and F is quadratic APN then F is AB [CCZ].

@ Algebraic degrees of AB functions are upper bounded by
o1 [CCz.
First example of AB functions:
@ Gold functions x2+! on Fan with ged(i, n) = 1, n odd:
@ Gold APN functions with n even are not AB;

@ Inverse functions are not AB.



Importance of Equivalence Relations for Functions

Equivalence relations preserving main cryptographic properties
(APN and AB) divide the set of all functions into classes.

@ They can be powerful construction methods providing for
each function a huge class of functions with the same
properties.

@ Instead of checking invariant properties for all functions, it
is enough to check only one in each class.



Cyclotomic, Linear, Affine, EA- and EAI- Equivalences

@ F and F’ are affine (resp. linear) equivalent if
F=AioFoA
for some affine (resp. linear) permutations A; and A..
@ F and F’ are extended affine equivalent (EA-equivalent) if
F =AjoFoA,+A
for some affine permutations A; and A; and some affine A.
@ F and F’ are EAl-equivalent if F’ is obtained from F by a

sequence of applications of EA-equivalence and inverses
of permutations.

@ Functions x? and x% over Fz» are cyclotomic equivalent if
o =2.d mod (27— 1)or,d = 2//d mod (2" — 1) (if
ged(d, 2" —1) =1).



Invariants and Relation Between Equivalences

@ Linear equivalence C affine equivalence C EA-equivalence
C EAl-equivalence.

@ Cyclotomic equivalence C EAl-equivalence.

@ APNness, ABness and resistance to algebraic attack are
preserved by EAl-equivalence.

@ Algebraic degree is preserved by EA-equivalence but not
by EAl-equivalence.

@ Permutation property is preserved by cyclotomic and affine
equivalences (not by EA- or EAl-equivalences).



Known AB power functions x9 on Fa»

’ Functions ‘ Exponents d ‘ Conditions on n odd ‘
Gold (1968) 2" +1 ged(i,n)=1,1<i<n/2
Kasami (1971) 22 2 11 ged(i,n) =1,2<i< n/2
Welch (conj.1968) 2"+ 3 n=2m+1
Niho 2™ 4+ 27 — 1, meven n=2m-+1
(conjectured in 1972) | 2™ + 2% _ 1, modd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.



Known APN power functions x? on Fas

’ Functions \ Exponents d \ Conditions ‘
Gold 2" 41 ged(i,n) =1,1<i<n/2
Kasami 22 _ 2l 41 ged(i,n)=1,2<i<n/2
Welch 2™+ 3 n=2m+1
Niho 2™ 1 2% _ 1, meven n=2m+1
27 4+ 2% _ 1, modd
Inverse 21 Ao n=2m-+1
Dobbertin | 24™ 4 23M 4 22m | om _ 4 n=>5m

@ This list is up to cyclotomic equivalence and is conjectured

complete (Dobbertin 1999).

@ For neven the Inverse function is differentially 4-uniform
and maximally nonlinear and is used as S-box in AES with

n=8.



Open problems in the beginning of 2000

@ All known APN functions were power functions up to
EA-equivalence.

@ Power APN functions are permutations for n odd and
3-to-1 for n even.

Open problems:

1 Existence of APN polynomials (EA-)inequivalent to power
functions.

2 Existence of APN permutations over Fan for n even.
First example for Problem 1 [B., 2003]:
F*(x) —oxM X1y 12 11 10 39 T L 06 5

over Fyg.



Another equivalence?

Property of stability [CCZ]

Let F be APN (resp. AB) on F2n and L4, L, be affine functions
from 3, to Fan. If (Ly, Lp) is @ permutation on F3, and

Fi(x) = Li(x, F(x)) is a permutation on Fan then, F, o F1_1 is
APN (resp. AB), where F»(x) = Lao(x, F(x)).

EAl-equivalence is a particular case of property of stability.

At YACC 2004 Canteaut, Carlet, Dobbertin were aware of the
example F* (independently found by Knutsen) and searching
for its infinite family.

The property of stability was "rediscovered" by Breveglieri,
Cherubini, Macchetti (Asiacrypt 2004).



CCZ-Equivalence

The graph of a function F : Fon — Fon is the set

Gr = {(x, F(x)) : x € Fon}.
F and F’" are CCZ-equivalent if £L(Gg) = Gg for some affine
permutation £ of Fon x Fan [B., Carlet, Pott 2005].

CCZ-equivalence
@ preserves differential uniformity, nonlinearity, and
resistance to algebraic attack.

@ is more general than EAl-equivalence [BCP 2005].
@ was used to solve the problems:

e There exist AB functions EA-inequivalent to any
permutation [B., Carlet, Pott 2005].

e For neven there exist APN permutations for n = 6 [Dillon et
al. 2009].



First Classes of APN Maps EAI-ineqg. to Monomials

APN and AB functions CCZ-equivalent to Gold functions and
EAl-inequivalent to power functions on Fon [BCP 2005].

’ Functions \ Conditions ‘
n>4
X2 (x4 x4 trn(1) + Dra (@ H + x ten(1)) ged(i, n) = 1
6|n
[x + 3 (2D 1 x4CHD) 4ty (x)u3(x2 1 + x2F )R | ged(iyn) = 1
m#n
X2 L aem(x@ ) 4 X w(x) + x w7 (%) n odd
0?4 G £ (0] (6 + (07 +1) min
HTPO0P T+ uPOR) + U O01EE (x + e () ged(i, n) = 1

The first function F is AB such that F + L is not a permutation
for any linear L.
@ An AB function is not necessarily EA-equivalent to a
permutation.



Relation Between Equivalences

@ Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent [Dempwolff; Yoshiara 2018].

@ For Gold APN monomials and quadratic APN polynomials
CCZ>EAI [B., Carlet, Pott 2005; B., Carlet, Leander 2009].
@ CCZ=EAlI for non-quadratic power APN with n <7 [B.,

Calderini, Villa 2019].

@ CCZ>EAI for non-power non-quadratic APN functions [B.,
Calderini, Villa 2019].



CCZ- and EA- Equivalences

Cases when CCZ-equivalence coincides with EA-equivalence:
@ Boolean functions [B., Carlet 2009].
@ All bent functions [B., Carlet 2009].
@ Two quadratic APN functions [Yoshiara 2012].

@ A quadratic APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to one of the Gold functions
[Yoshiara 2018].

Cases when CCZ-equivalence differs from EA-equivalence:

@ For functions from F7 to FJ’ with m > 2 [B., Carlet 2009;
Pott, Zhou 2013].



CCZ-construction of Bent Functions

Although for bent functions CCZ -and EA-equivalences
coincide, constructing new bent functions using
CCZ-equivalence is possible [B., Carlet 2011].

A few infinite families of bent Boolean and vectorial functions
are constructed by applying CCZ-equivalence to non-bent
vectorial functions with bent components.

Example F'(x) = x2*1 + (x% + x + 1)trp(x¥*") and

F(x) = x?*1 are CCZ-equivalent on Fan.

f(x) = trp(bF'(x)) is cubic bent when n/ged(n, i) even,

b € Fon \ Fy s.t. neither b nor b+ 1 are (2' 4 1)-th powers.



Big APN problem

Do APN permutations exist for n even?

Negative results:
@ no for quadratics [Nyberg 1993],
@ no for F € Fu[x] if n/2 is even [Hou 2004],
@ no for F € Fy2[x] [Hou 2004].



CCZ-construction of APN permutation for n even

The only known APN permutation for n even [Dillon et al 2009]:

@ Applying CCZ-equivalence to quadratic APN on Fan with
n = 6 and c primitive

F(x) = x3 4+ x"0 4+ ox4

obtain a nonquadratic APN permutation

025 x57 130 %56 4 532550 | -37,49 | 23,48 | 39,43 44,42
CHxH1 4018 x40 4 46436 | 51,35 | (52,34 18,33 4 156,32 |
C53x29 1 30528 | 025 | (5824 . (060422 4 37,21 | (51,20 .
CX18—|-C2X17+C4X15+C44X14 +032X13+C18X12+CX11 4
c9x10 1+ c17x8 4 51x7 4+ c17x6 4 ¢18x5 4 x4 4 ¢16x3 4+ ¢13x

Problem Find APN permutations for n > 8 even.



The first APN and AB classes CCZ-ineq. to Monomials

Let s, k, p be positive integers such that n = pk, p = 3, 4,

gcd(k, p) = ged(s, pk) = 1 and «a primitive in F5,. Then
x2H 4 21 2 ke

is quadratic APN on Faon and, if nis odd then it is an AB

permutation [B., Carlet, Felke, Leander 2006; B., Carlet,
Leander 2008].

@ This binomials solved an open problem from CCZ-paper
on existence of quadratic AB functions inequivalent to Gold
functions.

@ These binomials and Gold maps are the the only known
quadratic AB permutations.

@ Among all 480 known quadratic AB functions with n =7,
only Gold maps are CCZ-equivalent to permutations [Yu
2018].



Known APN families CCZ-ineq. to power functions

N°© Functions Conditions
Cclz FHH B olghent n = pk, ged(k, 3) = ged(s, 3k) = 1,p € {3,4},i = sk mod p,m = p— i,n > 12, u primitive in Fj.
; N FICRR -

i st 4 gP ) | e 4 gt g=2",n=2m,ged(i,m) =1, c€Fa,s € F_qi\‘ YF,,,IX +¢X? + ¢"X + 1 has no solution st
271 =

ca4 z* +a "' Tr, (a®2”) a#0

cs 2* + a7 Trd (a2 + a®z"®) 3ln.a#0

c6 2° +a 'Tr} (a%" + a%2®) 3n,a #0

o ug? P g g b gt = 3k, god(k, 3) = god(s, 3k) = 1,0, w € Fye,vw # 1,3)(k + s), u primitive in F.

€10 [(z + 22" ) 4o (uz + w2 22" )Y 4z + 22" ) (uz + u?" 2" n=2m,m > 2even, ged(k,m) = 1andi > 2 even, u primitive in F.,u’ € Fyn not a cube

o T L P L G 1 (2 4

n = 3m,m odd, L(z) = az®" + ba®" + c satisfies the conditions in Lemma 8 of [7]

@ All are quadratic.

@ All have the same optimal nonlinearity and for n odd they

are AB.

@ In general, these families are pairwise CCZ-inequivalent.




Representatives of APN polynomial families n < 12

Di i Functions Equivalent to
6 2 +az'” + a2 + a2’ +2* C3
az® + o' + a'a® C7-C9
7 2% + Trp(a”) Cc4
B+ 452 P 1 pa® 4 2™ o3
s 2° + Trg(2) Cc4
2% + a1 Trg(aa?) C4
a(z + 2'%)(az + a'°2'®) + a'" (az + a'02'%)"? C10
2%+ Try (2”) Cc4
2’ + Tri(a’ +a'®) C5
9 3 3(p18 4 36
@8+ Tri(@"® +2%) C6
25+ q2010 | AT 1T | 18166 | 28,120 o11
2 12 4 P o3
" 242 1 P o3
2% 4 Tryp(2”) Cc4
z* +a ' Tryy(a’a”) Cc4
11 2° + Tryy (2) Cc4

Infinite families are identified for
@ only 3 out of 13 quadratic APN functions of Fos;
@ only 4 out of more than 480 quadratic APN of Fy7;
@ only 6 out of more than 8000 quadratic APN of Fys.



APN Polynomial CCZ-Ineg. to Monomials and

Quadratics

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6:

X3 + C17(X17 —I—X18 —|—X20 —|—X24)—1—
¢ (trg(€*2x3 + ¢®x° + 9% + Bx™ + Ax13)+
tr3(c18X9)+x21 +)(42)
where c is some primitive element of F,¢ [Leander et al, Edel et
al. 2008].

@ No infinite families known.
@ No AB examples known.



Classification of APN Functions

Leander et al 2008:

CCZ-classification finished for:
@ APN functions with n < 5 (there are only power functions).

EA-classification is finished for:

@ APN functions with n < 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).



Commutative semifields

S = (S, +, ) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

@ F :Fpn — Fpn is planar (p odd) if

F(x + a) — F(x), va e Fp,

are permutations.

@ There is one-to-one correspondence between quadratic
planar functions and commutative semifields [Coulter,
Henderson 2008].

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].



Yet another equivalence?

@ Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].

@ If quadratic planar functions F and F’ are isotopic
equivalent then F’ is EA-equivalent to

F(x + L(x)) — F(x) — F(L(x))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].

@ Isotopic equivalence for APN functions?



Isotopic construction

Isotopic construction of APN functions:
F(x + L(x)) — F(x) — F(L(x))
where linear L and F an APN function.

It is not equivalence but a powerful construction method:
@ a new infinite family of quadratic APN functions;

@ for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions?



Equivalence more general than CCZ-equivalence?

The indicator of the graph Gr of F : F] — F7":

1 if y=F(x)
1o (x.y) = { 0 otherwise
@ F and F’ are CCZ-equivalent iff 1, = 1, o L for some
affine permutation L.

@ Fand F" are CCZ-equivalent iff 15, and 15, are
CCZ-equivalent [B., Carlet 2010].

Currently CCZ-equivalence is the most general known
equivalence relation preserving APN property.



Characterization of APN and AB functions

Let F : Fon — Fan and a, b € Fan, define y¢ : F3, — Ty as

wab)={ g

1 ifa# 0and F(x + a) + F(x) = b has solutions,
otherwise.

CCZ; B., Carlet, Helleseth 2011:

F is APN iff v has weight 2271 — 21,

F is AB iff v£ is bent.

~¢ is determined for C1-C6 and all APN monomials except
Dobbertin’s.

For nonquadratic AB cases found ~£ provide potentially
new bent functions.

If F and F’ are CCZ-equivalent then v = ¢ o L for some
affine permutation L.
e All affine invariants for v are CCZ-invariants for F.



Bounds on algebraic degree of APN and AB functions

If Fis AB over Fon then

[CCZ].
The bound is reachable (for example, the inverses of Gold
functions [Nyberg 1993]).

Bound on algebraic degree of APN?
@ For n odd the inverse APN function has algebraic degree
n—1.
@ For n even Dobbertin function has algebraic degree
n/5+ 3.

@ Kasami functions have algebraic degree i + 1 for
i<n/2—1,gcd(n,i)=1.



APN functions of algebraic degree n

B., Carlet, Helleseth, Li 2016:

Conjecture 1 There exists no APN function over Fan of
algebraic degree nfor n > 3.

@ This conjecture is true for n € {3,4,5}.

@ x?"~1 4 F(x) is not APN for most of the known APN
functions F over Fon.

It implies for most of the known APN functions the following
conjecture is true.

Conjecture 2 If n > 3 and F’ is a function over F2n obtained
from an APN function F by changing its value in one point then
F’ is not APN.



Changing multiple points in APN functions

Changing two points [Kaleyski 2019]:
Fi(x) = x4 (x+ 1?1+ F(x)

If Fis AB and n > 5then F’ is not AB.
For n = 4 minimum distance between APN functions is 2.

Problem What is minimum number of points two APN (resp.
AB) functions can differ.

Distance between known APN functions tends to grow with n
[B., Carlet, Helleseth, Kaleyski 2019]. d(F, G) > 1+

B b721€i]1r712n {a € Fon: (Ix € Fan)(F(X)+ F(a+ x) + F(a+ ) = b)}ﬂ ,

@ For n =5 alow bound for distance between all APN
functions is 4 (tight or not is not known).

@ For n =6 a low bound for distance between all known APN
functions is 6; for n = 7 is 19; for n = 8 is 24.



