Differential Spectra of Power Permutations

Daniel J. Katz^{*,†}, Kyle Pacheco^{*,†}, and Yakov Sapozhnikov^{*} Department of Mathematics, California State University, Northridge

*Supported by National Science Foundation Award DMS-1500856 †Supported by National Science Foundation Award CCF-1815487

Boolean Functions and their Applications (BFA) 2019 Villa Finaly, Florence, Italy 17 June 2019

Power function on \mathbb{F}_q : $f : \mathbb{F}_q \to \mathbb{F}_q$ with $f(x) = x^d$ for some positive integer d

Power function on \mathbb{F}_q : $f : \mathbb{F}_q \to \mathbb{F}_q$ with $f(x) = x^d$ for some positive integer d

Power permutation of \mathbb{F}_q : a power function $f(x) = x^d$ on \mathbb{F}_q is a permutation of \mathbb{F}_q if and only if gcd(d, q - 1) = 1

Power function on \mathbb{F}_q : $f : \mathbb{F}_q \to \mathbb{F}_q$ with $f(x) = x^d$ for some positive integer d

Power permutation of \mathbb{F}_q : a power function $f(x) = x^d$ on \mathbb{F}_q is a permutation of \mathbb{F}_q if and only if gcd(d, q - 1) = 1

If gcd(d, q - 1) = 1, we say that d is an invertible exponent over \mathbb{F}_q : if $e = 1/d \pmod{q-1}$, then $x \mapsto x^e$ is the inverse function of $x \mapsto x^d$

Power function on \mathbb{F}_q : $f : \mathbb{F}_q \to \mathbb{F}_q$ with $f(x) = x^d$ for some positive integer d

Power permutation of \mathbb{F}_q : a power function $f(x) = x^d$ on \mathbb{F}_q is a permutation of \mathbb{F}_q if and only if gcd(d, q - 1) = 1

If gcd(d, q - 1) = 1, we say that d is an invertible exponent over \mathbb{F}_q : if $e = 1/d \pmod{q-1}$, then $x \mapsto x^e$ is the inverse function of $x \mapsto x^d$

Cryptographic significance: arithmetically easy to implement power permutations within cryptosystems

Power function on \mathbb{F}_q : $f : \mathbb{F}_q \to \mathbb{F}_q$ with $f(x) = x^d$ for some positive integer d

Power permutation of \mathbb{F}_q : a power function $f(x) = x^d$ on \mathbb{F}_q is a permutation of \mathbb{F}_q if and only if gcd(d, q - 1) = 1

If gcd(d, q - 1) = 1, we say that d is an invertible exponent over \mathbb{F}_q : if $e = 1/d \pmod{q-1}$, then $x \mapsto x^e$ is the inverse function of $x \mapsto x^d$

Cryptographic significance: arithmetically easy to implement power permutations within cryptosystems

Want power permutations that are resistant to linear and differential cryptanalysis

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ be the absolute trace:

$$\mathsf{Tr}(x) = x + x^p + \dots + x^{p^{n-1}}$$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ be the absolute trace:

$$\mathsf{Tr}(x) = x + x^p + \dots + x^{p^{n-2}}$$

Then for any $a \in \mathbb{F}_q$, we have an \mathbb{F}_p -linear functional:

$$\mathbb{F}_q \to \mathbb{F}_p \\ x \mapsto \mathsf{Tr}(ax)$$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ be the absolute trace:

$$\mathsf{Tr}(x) = x + x^p + \dots + x^{p^{n-1}}$$

Then for any $a \in \mathbb{F}_q$, we have an \mathbb{F}_p -linear functional:

$$\mathbb{F}_q o \mathbb{F}_p$$

 $x \mapsto \mathsf{Tr}(ax)$

Every \mathbb{F}_p -linear functional of \mathbb{F}_q is uniquely represented in this way

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ be the absolute trace:

$$\mathsf{Tr}(x) = x + x^p + \dots + x^{p^{n-1}}$$

Then for any $a \in \mathbb{F}_q$, we have an \mathbb{F}_p -linear functional:

$$\mathbb{F}_q o \mathbb{F}_p$$

 $x \mapsto \mathsf{Tr}(ax)$

Every \mathbb{F}_p -linear functional of \mathbb{F}_q is uniquely represented in this way If a_1, \ldots, a_n form an \mathbb{F}_p -basis of \mathbb{F}_{p^n} , then we have the \mathbb{F}_p -linear isomorphism:

$$\mathbb{F}_q = \mathbb{F}_{p^n} \to \mathbb{F}_p^n$$
$$x \mapsto (\operatorname{Tr}(a_1 x), \dots, \operatorname{Tr}(a_n x)),$$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let $\operatorname{Tr}: \mathbb{F}_q \to \mathbb{F}_p$ be the absolute trace:

$$\mathsf{Tr}(x) = x + x^p + \dots + x^{p^{n-1}}$$

Then for any $a \in \mathbb{F}_q$, we have an \mathbb{F}_p -linear functional:

$$\mathbb{F}_q o \mathbb{F}_p$$

 $x \mapsto \mathsf{Tr}(ax)$

Every \mathbb{F}_p -linear functional of \mathbb{F}_q is uniquely represented in this way If a_1, \ldots, a_n form an \mathbb{F}_p -basis of \mathbb{F}_{p^n} , then we have the \mathbb{F}_p -linear isomorphism:

$$\mathbb{F}_q = \mathbb{F}_{\rho^n} \to \mathbb{F}_{\rho}^n$$
$$x \mapsto (\operatorname{Tr}(a_1 x), \dots, \operatorname{Tr}(a_n x)),$$

So we call our \mathbb{F}_p -linear functionals $x \mapsto \operatorname{Tr}(ax)$ (with $a \neq 0$) component linear functionals

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

If $f : \mathbb{F}_q \to \mathbb{F}_q$, then for each $a \in \mathbb{F}_q^{\times}$, we get a component function of f:

 $\mathbb{F}_q \to \mathbb{F}_p$ $x \mapsto \mathsf{Tr}(af(x))$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

If $f : \mathbb{F}_q \to \mathbb{F}_q$, then for each $a \in \mathbb{F}_q^{\times}$, we get a component function of f:

$$\mathbb{F}_q o \mathbb{F}_p$$

 $x \mapsto \mathsf{Tr}(af(x))$

To resist linear cryptanalysis: want component functions of funcorrelated with the component linear functionals $x \mapsto Tr(bx)$ (for all $b \in \mathbb{F}_q$)

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

If $f : \mathbb{F}_q \to \mathbb{F}_q$, then for each $a \in \mathbb{F}_q^{\times}$, we get a component function of f:

$$\mathbb{F}_q o \mathbb{F}_p$$

 $x \mapsto \mathsf{Tr}(af(x))$

To resist linear cryptanalysis: want component functions of funcorrelated with the component linear functionals $x \mapsto Tr(bx)$ (for all $b \in \mathbb{F}_q$)

When
$$p = 2$$
, $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(af(x)) - \operatorname{Tr}(bx)}$
= # of agreements between $\operatorname{Tr}(af(x))$ and $\operatorname{Tr}(bx)$
- # of disagreements between $\operatorname{Tr}(af(x))$ and $\operatorname{Tr}(bx)$

Let \mathbb{F}_q be a finite field of characteristic p and order $q = p^n$

If $f : \mathbb{F}_q \to \mathbb{F}_q$, then for each $a \in \mathbb{F}_q^{\times}$, we get a component function of f:

$$\mathbb{F}_{q} o \mathbb{F}_{p}$$

 $x \mapsto \operatorname{Tr}(af(x))$

To resist linear cryptanalysis: want component functions of funcorrelated with the component linear functionals $x \mapsto Tr(bx)$ (for all $b \in \mathbb{F}_q$)

When
$$p = 2$$
, $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(af(x)) - \operatorname{Tr}(bx)}$
= # of agreements between $\operatorname{Tr}(af(x))$ and $\operatorname{Tr}(bx)$
- # of disagreements between $\operatorname{Tr}(af(x))$ and $\operatorname{Tr}(bx)$
Notice: $x \mapsto (-1)^{\operatorname{Tr}(x)}$ is the canonical additive character of \mathbb{F}_r .

Notice: $x \mapsto (-1)^{\mathsf{Tr}(x)}$ is the canonical additive character of \mathbb{F}_q into $\{\pm 1\} \subseteq \mathbb{C}^{\times}$ (when \mathbb{F}_q is characteristic 2)

If \mathbb{F}_q has characteristic 2, want $\sum_{x\in\mathbb{F}_q}(-1)^{{\rm Tr}(af(x))-{\rm Tr}(bx)}$ to be about 0

If \mathbb{F}_q has characteristic 2, want $\sum_{x\in\mathbb{F}_q}(-1)^{{\rm Tr}(af(x))-{\rm Tr}(bx)}$ to be about 0

For \mathbb{F}_q of arbitrary characteristic p, let $\zeta_p = \exp(2\pi i/p)$ and then define the canonical additive character of \mathbb{F}_q to be

$$\psi_{q} : \mathbb{F}_{q} \to \langle \zeta_{p} \rangle \subseteq \mathbb{C}^{\times}$$
$$\psi_{q}(x) = \zeta_{p}^{\mathsf{Tr}(x)} = \zeta_{p}^{x + x^{p} + \dots + x^{q/p}}$$

If \mathbb{F}_q has characteristic 2, want $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(af(x)) - \operatorname{Tr}(bx)}$ to be about 0

For \mathbb{F}_q of arbitrary characteristic p, let $\zeta_p = \exp(2\pi i/p)$ and then define the canonical additive character of \mathbb{F}_q to be

$$\psi_{q} : \mathbb{F}_{q} \to \langle \zeta_{p} \rangle \subseteq \mathbb{C}^{\times}$$
$$\psi_{q}(x) = \zeta_{p}^{\mathsf{Tr}(x)} = \zeta_{p}^{x + x^{p} + \dots + x^{q/p}}$$

We define the Walsh Transform of f to be the function

$$W_{f}: \mathbb{F}_{q} \times \mathbb{F}_{q} \to \mathbb{C}$$
$$W_{f}(a, b) = \sum_{x \in \mathbb{F}_{q}} \psi_{q}(af(x) - bx) = \sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\mathsf{Tr}(af(x)) - \mathsf{Tr}(bx)}$$

If \mathbb{F}_q has characteristic 2, want $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(af(x)) - \operatorname{Tr}(bx)}$ to be about 0

For \mathbb{F}_q of arbitrary characteristic p, let $\zeta_p = \exp(2\pi i/p)$ and then define the canonical additive character of \mathbb{F}_q to be

$$\psi_{q} : \mathbb{F}_{q} \to \langle \zeta_{p} \rangle \subseteq \mathbb{C}^{\times}$$
$$\psi_{q}(x) = \zeta_{p}^{\mathsf{Tr}(x)} = \zeta_{p}^{x + x^{p} + \dots + x^{q/p}}$$

We define the Walsh Transform of f to be the function

$$W_{f}: \mathbb{F}_{q} \times \mathbb{F}_{q} \to \mathbb{C}$$
$$W_{f}(a, b) = \sum_{x \in \mathbb{F}_{q}} \psi_{q}(af(x) - bx) = \sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\mathsf{Tr}(af(x)) - \mathsf{Tr}(bx)}$$

And we define the Walsh Spectrum of f to be $\{W_f(a, b) : a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q\}$ (a = 0 tells us nothing about f)

If \mathbb{F}_q has characteristic 2, want $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(af(x)) - \operatorname{Tr}(bx)}$ to be about 0

For \mathbb{F}_q of arbitrary characteristic p, let $\zeta_p = \exp(2\pi i/p)$ and then define the canonical additive character of \mathbb{F}_q to be

$$\psi_{q} : \mathbb{F}_{q} \to \langle \zeta_{p} \rangle \subseteq \mathbb{C}^{\times}$$
$$\psi_{q}(x) = \zeta_{p}^{\mathsf{Tr}(x)} = \zeta_{p}^{x + x^{p} + \dots + x^{q/p}}$$

We define the Walsh Transform of f to be the function

$$W_{f}: \mathbb{F}_{q} \times \mathbb{F}_{q} \to \mathbb{C}$$
$$W_{f}(a, b) = \sum_{x \in \mathbb{F}_{q}} \psi_{q}(af(x) - bx) = \sum_{x \in \mathbb{F}_{q}} \zeta_{p}^{\mathsf{Tr}(af(x)) - \mathsf{Tr}(bx)}$$

And we define the Walsh Spectrum of f to be $\{W_f(a, b) : a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q\}$ (a = 0 tells us nothing about f)

Want every element of this spectrum to have small magnitude

 $\psi_{\pmb{q}}\colon \mathbb{F}_{\pmb{q}}\to \mathbb{C}^{\times}$ is the canonical additive character of $\mathbb{F}_{\pmb{q}}$

 $\psi_q \colon \mathbb{F}_q \to \mathbb{C}^{ imes}$ is the canonical additive character of \mathbb{F}_q

 $f(x) = x^d$ is a power permutation of \mathbb{F}_q (so gcd(d, q - 1) = 1)

 $\psi_q \colon \mathbb{F}_q \to \mathbb{C}^{ imes}$ is the canonical additive character of \mathbb{F}_q

 $f(x) = x^d$ is a power permutation of \mathbb{F}_q (so gcd(d, q - 1) = 1)

For $a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q$, the Walsh transform is

$$W_f(a,b) = \sum_{x \in \mathbb{F}_q} \psi_q(ax^d - bx),$$

which is a Weil sum of a binomial

 $\psi_q \colon \mathbb{F}_q \to \mathbb{C}^{ imes}$ is the canonical additive character of \mathbb{F}_q

 $f(x) = x^d$ is a power permutation of \mathbb{F}_q (so gcd(d, q - 1) = 1)

For $a \in \mathbb{F}_q^{\times}$, $b \in \mathbb{F}_q$, the Walsh transform is

$$W_f(a,b) = \sum_{x \in \mathbb{F}_q} \psi_q(ax^d - bx),$$

which is a Weil sum of a binomial, which can be reparameterized with $y = a^{1/d}x$

$$W_f(a,b) = \sum_{y \in \mathbb{F}_q} \psi_q(y^d - ba^{-1/d}y) = W_f(1, a^{-1/d}b)$$

 $\psi_q \colon \mathbb{F}_q \to \mathbb{C}^{ imes}$ is the canonical additive character of \mathbb{F}_q

 $f(x) = x^d$ is a power permutation of \mathbb{F}_q (so gcd(d, q - 1) = 1)

For $a \in \mathbb{F}_q^{ imes}, b \in \mathbb{F}_q$, the Walsh transform is

$$W_f(a,b) = \sum_{x \in \mathbb{F}_q} \psi_q(ax^d - bx),$$

which is a Weil sum of a binomial, which can be reparameterized with $y = a^{1/d}x$

$$W_f(a,b) = \sum_{y \in \mathbb{F}_q} \psi_q(y^d - ba^{-1/d}y) = W_f(1, a^{-1/d}b)$$

So define

$$W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx),$$

 $\psi_q \colon \mathbb{F}_q \to \mathbb{C}^{ imes}$ is the canonical additive character of \mathbb{F}_q

 $f(x) = x^d$ is a power permutation of \mathbb{F}_q (so gcd(d, q - 1) = 1)

For $a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q$, the Walsh transform is

$$W_f(a,b) = \sum_{x \in \mathbb{F}_q} \psi_q(ax^d - bx),$$

which is a Weil sum of a binomial, which can be reparameterized with $y = a^{1/d}x$

$$W_f(a,b) = \sum_{y \in \mathbb{F}_q} \psi_q(y^d - ba^{-1/d}y) = W_f(1, a^{-1/d}b)$$

So define

$$W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx),$$

and then the Walsh spectrum of $f(x) = x^d$ over \mathbb{F}_q is $\{W_{q,d}(b): b \in \mathbb{F}_q\}$

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $b \in \mathbb{F}_q$. Then

$$W_{q,pd}(b) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^{pd} - b\mathbf{x}) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^d - b\mathbf{x}) = W_{q,d}(b),$$

so that Walsh spectrum for pd is the same as that for d

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $b \in \mathbb{F}_q$. Then

$$W_{q,pd}(b) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^{pd} - b\mathbf{x}) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^d - b\mathbf{x}) = W_{q,d}(b),$$

so that Walsh spectrum for pd is the same as that for d

If d has an inverse modulo q-1 ($x \mapsto x^d$ is a power permutation),

$$egin{aligned} &\mathcal{W}_{q,1/d}(b) = \sum_{x\in \mathbb{F}_q} \psi_q(x^{1/d} - bx) \ &= \sum_{y\in \mathbb{F}_q} \psi_q((-b^{-1}y^d)^{1/d} - b(-b^{-1}y^d)) \ &= \sum_{y\in \mathbb{F}_q} \psi_q(y^d - b^{-1/d}y) = \mathcal{W}_{q,d}(b^{-1/d}), \end{aligned}$$

(and $W_{q,1/d}(0) = 0 = W_{q,d}(0)$), so the Walsh spectrum for 1/d is the same as that for d.

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $b \in \mathbb{F}_q$. Then

$$W_{q,pd}(b) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^{pd} - b\mathbf{x}) = \sum_{\mathbf{x}\in\mathbb{F}_q} \psi_q(\mathbf{x}^d - b\mathbf{x}) = W_{q,d}(b),$$

so that Walsh spectrum for pd is the same as that for d

If d has an inverse modulo q-1 ($x \mapsto x^d$ is a power permutation),

$$\begin{split} W_{q,1/d}(b) &= \sum_{x \in \mathbb{F}_q} \psi_q(x^{1/d} - bx) \\ &= \sum_{y \in \mathbb{F}_q} \psi_q((-b^{-1}y^d)^{1/d} - b(-b^{-1}y^d)) \\ &= \sum_{y \in \mathbb{F}_q} \psi_q(y^d - b^{-1/d}y) = W_{q,d}(b^{-1/d}), \end{split}$$

(and $W_{q,1/d}(0) = 0 = W_{q,d}(0)$), so the Walsh spectrum for 1/d is the same as that for d.

Two exponents d, d' are equivalent if $d' \equiv p^k d \pmod{q-1}$ or $d' \equiv p^k d^{-1} \pmod{q-1}$ (when the inverse exists).

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

Helleseth: spectrum of power permutation (with $W_{q,d}(0)$ removed) has at least three distinct values when d is nondegenerate

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

Helleseth: spectrum of power permutation (with $W_{q,d}(0)$ removed) has at least three distinct values when d is nondegenerate

If \mathbb{F}_q is of characteristic p and order p^n :

Number of Values in the Walsh Spectrum $char(\mathbb{F}_q) = p$ and $f(x) = x^d$ is a power permutation of \mathbb{F}_q

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

Helleseth: spectrum of power permutation (with $W_{q,d}(0)$ removed) has at least three distinct values when d is nondegenerate

If \mathbb{F}_q is of characteristic p and order p^n :

▶ if n not a power of 2, we know a d that produces a Walsh spectrum (W_{q,d}(0) removed) with exactly three values

Number of Values in the Walsh Spectrum $char(\mathbb{F}_q) = p$ and $f(x) = x^d$ is a power permutation of \mathbb{F}_q

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

Helleseth: spectrum of power permutation (with $W_{q,d}(0)$ removed) has at least three distinct values when d is nondegenerate

If \mathbb{F}_q is of characteristic p and order p^n :

- ▶ if n not a power of 2, we know a d that produces a Walsh spectrum (W_{q,d}(0) removed) with exactly three values
- ► Conjecture (Helleseth 1971): if n is a power of 2, then no d has spectrum (W_{q,d}(0) removed) with exactly three values

Number of Values in the Walsh Spectrum $char(\mathbb{F}_q) = p$ and $f(x) = x^d$ is a power permutation of \mathbb{F}_q

If d is equivalent to 1 (i.e., a power of p modulo q - 1), then

$$W_{q,d}(b) = W_{q,1}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^1 - bx) = \begin{cases} q & \text{if } b = 1\\ 0 & \text{otherwise} \end{cases}$$

So the Walsh spectrum is $\{0, q\}$ and we say that d and $f(x) = x^d$ are degenerate over \mathbb{F}_q

Helleseth: spectrum of power permutation (with $W_{q,d}(0)$ removed) has at least three distinct values when d is nondegenerate

If \mathbb{F}_q is of characteristic p and order p^n :

- ▶ if n not a power of 2, we know a d that produces a Walsh spectrum (W_{q,d}(0) removed) with exactly three values
- Conjecture (Helleseth 1971): if n is a power of 2, then no d has spectrum (W_{q,d}(0) removed) with exactly three values
- ► This conjecture has been proved when p = 2 (K., 2012) or p = 3 (K., 2015), but is open for p ≥ 5

Let $f : \mathbb{F}_q \to \mathbb{F}_q$

Let $f : \mathbb{F}_q \to \mathbb{F}_q$

For $a, b \in \mathbb{F}_q$, the differential multiplicity of f with respect to aand b is the number $\delta_f(a, b)$ of solutions $(x, y) \in \mathbb{F}_q^2$ of the system

$$y - x = a$$

 $f(y) - f(x) = b$,

Let $f : \mathbb{F}_q \to \mathbb{F}_q$

For $a, b \in \mathbb{F}_q$, the differential multiplicity of f with respect to aand b is the number $\delta_f(a, b)$ of solutions $(x, y) \in \mathbb{F}_q^2$ of the system

$$y - x = a$$

 $f(y) - f(x) = b$,

or equivalently

$$\delta_f(a,b) = \#\{x \in \mathbb{F}_q : f(x+a) - f(x) = b\}.$$

Let $f : \mathbb{F}_q \to \mathbb{F}_q$

For $a, b \in \mathbb{F}_q$, the differential multiplicity of f with respect to aand b is the number $\delta_f(a, b)$ of solutions $(x, y) \in \mathbb{F}_q^2$ of the system

$$y - x = a$$

 $f(y) - f(x) = b$,

or equivalently

$$\delta_f(a,b) = \#\{x \in \mathbb{F}_q : f(x+a) - f(x) = b\}.$$

We do not typically consider a = 0 because

$$\delta_f(\mathbf{0},b) = egin{cases} q & ext{if } b = 0, \ 0 & ext{otherwise}. \end{cases}$$

 $f: \mathbb{F}_q \to \mathbb{F}_q$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

$$f:\mathbb{F}_q
ightarrow\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

$$f:\mathbb{F}_q
ightarrow\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

The differential uniformity of f is

$$\delta_f = \max \Delta_f = \max_{a \in F^{ imes}, b \in F} \delta_f(a, b)$$

$$f:\mathbb{F}_q
ightarrow\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

The differential uniformity of f is

$$\delta_f = \max \Delta_f = \max_{a \in F^{\times}, b \in F} \delta_f(a, b)$$

Want δ_f as as small as possible to counter differential cryptanalysis

$$f:\mathbb{F}_q
ightarrow\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

The differential uniformity of f is

$$\delta_f = \max \Delta_f = \max_{a \in F^{\times}, b \in F} \delta_f(a, b)$$

Want δ_f as as small as possible to counter differential cryptanalysis

Perfect nonlinear (PN) or planar function: $x \mapsto f(x + a) - f(x)$ is a permutation for every $a \in F^{\times}$, so $\Delta_f = \{1\}$ and $\delta_f = 1$

$$f:\mathbb{F}_q\to\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

The differential uniformity of f is

$$\delta_f = \max \Delta_f = \max_{a \in F^{\times}, b \in F} \delta_f(a, b)$$

Want δ_f as as small as possible to counter differential cryptanalysis

Perfect nonlinear (PN) or planar function: $x \mapsto f(x + a) - f(x)$ is a permutation for every $a \in F^{\times}$, so $\Delta_f = \{1\}$ and $\delta_f = 1$

PN functions exist only if $char(\mathbb{F}_q)$ is odd; are never permutations

$$f:\mathbb{F}_q
ightarrow\mathbb{F}_q$$

differential mult.: $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : f(x + a) - f(x) = b\}$

The differential spectrum of f is

$$\Delta_f = \{\delta_f(a, b) : a \in F^{\times}, b \in F\}.$$

The differential uniformity of f is

$$\delta_f = \max \Delta_f = \max_{a \in F^{\times}, b \in F} \delta_f(a, b)$$

Want δ_f as as small as possible to counter differential cryptanalysis

Perfect nonlinear (PN) or planar function: $x \mapsto f(x + a) - f(x)$ is a permutation for every $a \in F^{\times}$, so $\Delta_f = \{1\}$ and $\delta_f = 1$

PN functions exist only if $char(\mathbb{F}_q)$ is odd; are never permutations

In characteristic 2, each $\delta_f(a, b)$ is even, so the best possible is an almost perfect nonlinear (APN) function: $\Delta_f = \{0, 2\}$ and $\delta_f = 2$

For
$$a \in \mathbb{F}_q^{\times}$$
 and $b \in \mathbb{F}_q$,

$$\delta_f(a, b) = \#\{x \in \mathbb{F}_q : (x+a)^d - x^d = b\}$$

$$= \#\{y \in \mathbb{F}_q : (y+1)^d - y^d = b/a^d\}$$

$$= \delta_f(1, b/a^d).$$

For
$$a \in \mathbb{F}_q^{\times}$$
 and $b \in \mathbb{F}_q$,
 $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : (x + a)^d - x^d = b\}$
 $= \#\{y \in \mathbb{F}_q : (y + 1)^d - y^d = b/a^d\}$
 $= \delta_f(1, b/a^d).$

So for each $c \in \mathbb{F}_q$, define the differential multiplicity for x^d over \mathbb{F}_q at c to be

$$N_{q,d}(c) = \delta_{x\mapsto x^d}(1,c) = \#\{x\in \mathbb{F}_q: (x+1)^d - x^d = c\},$$

For
$$a \in \mathbb{F}_q^{\times}$$
 and $b \in \mathbb{F}_q$,
 $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : (x + a)^d - x^d = b\}$
 $= \#\{y \in \mathbb{F}_q : (y + 1)^d - y^d = b/a^d\}$
 $= \delta_f(1, b/a^d).$

So for each $c \in \mathbb{F}_q$, define the differential multiplicity for x^d over \mathbb{F}_q at c to be

$$N_{q,d}(c) = \delta_{x \mapsto x^d}(1,c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\},$$

so the power function $f(x) = x^d$ on \mathbb{F}_q has differential spectrum (Δ_f) equal to

$$\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$$

For
$$a \in \mathbb{F}_q^{\times}$$
 and $b \in \mathbb{F}_q$,
 $\delta_f(a, b) = \#\{x \in \mathbb{F}_q : (x + a)^d - x^d = b\}$
 $= \#\{y \in \mathbb{F}_q : (y + 1)^d - y^d = b/a^d\}$
 $= \delta_f(1, b/a^d).$

So for each $c \in \mathbb{F}_q$, define the differential multiplicity for x^d over \mathbb{F}_q at c to be

$$N_{q,d}(c) = \delta_{x \mapsto x^d}(1,c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\},$$

so the power function $f(x) = x^d$ on \mathbb{F}_q has differential spectrum (Δ_f) equal to

$$\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$$

Important observation: $\sum_{c \in \mathbb{F}_q} N_{q,d}(c) = q$

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $c \in \mathbb{F}_q$. Then

$$\begin{split} N_{q,pd}(c^p) &= \#\{x \in \mathbb{F}_q : (x+1)^{pd} - x^{pd} = c^p\} \\ &= \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} = N_{q,d}(c), \end{split}$$

so that $\Delta_{q,pd} = \Delta_{q,d}$.

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $c \in \mathbb{F}_q$. Then

$$\begin{split} N_{q,pd}(c^p) &= \#\{x \in \mathbb{F}_q : (x+1)^{pd} - x^{pd} = c^p\} \\ &= \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} = N_{q,d}(c), \end{split}$$

so that $\Delta_{q,pd} = \Delta_{q,d}$.

If d has an inverse modulo q-1 ($x \mapsto x^d$ is a power permutation),

$$\begin{split} N_{q,1/d}(1/c^d) &= \#\{x \in \mathbb{F}_q : (x+1)^{1/d} - x^{1/d} = c^{-1/d}\} \\ &= \#\{x \in \mathbb{F}_q : (x^{1/d} + c^{-1/d})^d - x = 1\} \\ &= \#\{y \in \mathbb{F}_q : (c^{-1/d}y + c^{-1/d})^d - (c^{-1/d}y)^d = 1\} \\ &= \#\{y \in \mathbb{F}_q : (y+1)^d - y^d = c\} = N_{q,d}(c), \end{split}$$

(and $N_{q,1/d}(0) = 0 = N_{q,d}(0)$), so then $\Delta_{q,1/d} = \Delta_{q,d}$.

Equivalent Exponents

Suppose char $(\mathbb{F}_q) = p$, $d \in \mathbb{Z}_+$, and $c \in \mathbb{F}_q$. Then

$$\begin{split} N_{q,pd}(c^p) &= \#\{x \in \mathbb{F}_q : (x+1)^{pd} - x^{pd} = c^p\} \\ &= \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} = N_{q,d}(c), \end{split}$$

so that $\Delta_{q,pd} = \Delta_{q,d}$.

If d has an inverse modulo q-1 ($x \mapsto x^d$ is a power permutation),

$$\begin{split} N_{q,1/d}(1/c^d) &= \#\{x \in \mathbb{F}_q : (x+1)^{1/d} - x^{1/d} = c^{-1/d}\} \\ &= \#\{x \in \mathbb{F}_q : (x^{1/d} + c^{-1/d})^d - x = 1\} \\ &= \#\{y \in \mathbb{F}_q : (c^{-1/d}y + c^{-1/d})^d - (c^{-1/d}y)^d = 1\} \\ &= \#\{y \in \mathbb{F}_q : (y+1)^d - y^d = c\} = N_{q,d}(c), \end{split}$$

(and $N_{q,1/d}(0) = 0 = N_{q,d}(0)$), so then $\Delta_{q,1/d} = \Delta_{q,d}$.

Recall: Two exponents d, d' are equivalent if $d' \equiv p^k d$ (mod q-1) or $d' \equiv p^k d^{-1}$ (mod q-1) (when the inverse exists).

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$

.

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$
so

1

$$\Delta_{q,d} = \{0,q\}$$

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^{d}) = N_{q,1}(c^{1}) = \#\{x \in \mathbb{F}_{q} : (x+1)^{1} - x^{1} = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$

so

1

$$\Delta_{\boldsymbol{q},\boldsymbol{d}} = \{0,q\}$$

Conversely, if $\Delta_{q,d} = \{0, q\}$,

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $\operatorname{char}(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$

so

$$\Delta_{\boldsymbol{q},\boldsymbol{d}} = \{0,q\}$$

Conversely, if $\Delta_{q,d} = \{0, q\}$,

then $(x+1)^d - x^d = 1$ must have q solutions

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$
so

$$\Delta_{q,d} = \{0,q\}$$

Conversely, if $\Delta_{q,d} = \{0, q\}$,

then $(x + 1)^d - x^d = 1$ must have q solutions so $(x + 1)^d - x^d - 1 \pmod{x^q - x}$ vanishes, and

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$

so

$$\Delta_{q,d} = \{0,q\}$$

Conversely, if $\Delta_{q,d} = \{0,q\}$,

then $(x + 1)^d - x^d = 1$ must have q solutions so $(x + 1)^d - x^d - 1 \pmod{x^q - x}$ vanishes, and

this forces d to be degenerate

Let f be a power function $f(x) = x^d$ on \mathbb{F}_q with $char(\mathbb{F}_q) = p$

If d is degenerate (i.e., equivalent to 1, which is to say, equal to a power of p modulo q - 1) then

$$N_{q,d}(c^d) = N_{q,1}(c^1) = \#\{x \in \mathbb{F}_q : (x+1)^1 - x^1 = c\} = \begin{cases} q & \text{if } c = 1, \\ 0 & \text{otherwise.} \end{cases}$$
so

$$\Delta_{\boldsymbol{q},\boldsymbol{d}} = \{0,q\}$$

Conversely, if $\Delta_{q,d} = \{0, q\}$,

then $(x + 1)^d - x^d = 1$ must have q solutions so $(x + 1)^d - x^d - 1 \pmod{x^q - x}$ vanishes, and

this forces d to be degenerate

Conclusion: *d* is degenerate $\Leftrightarrow \Delta_{q,d} = \{0,q\}$

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q-1) = 1)

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{l} \text{Recall: } N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{ll} \text{Recall:} & \textit{N}_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ & \textit{W}_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{l} \text{Recall: } N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

•
$$\sum_{b\in\mathbb{F}_q}W_{q,d}(b)^1=q$$

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{l} \text{Recall: } N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

•
$$\sum_{b\in\mathbb{F}_q}W_{q,d}(b)^1=q$$

•
$$\sum_{b\in\mathbb{F}_q}W_{q,d}(b)^2=q^2$$

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{l} \text{Recall: } N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^1 = q$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^2 = q^2$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^3 = q^2 N_{q,d}(1)$$

Differential Multiplicities and the Walsh Transform

Let f be a power permutation $f(x) = x^d$ on \mathbb{F}_q (gcd(d, q - 1) = 1)

$$\begin{array}{l} \text{Recall: } N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ W_{q,d}(b) = \sum_{x \in \mathbb{F}_q} \psi_q(x^d - bx) \end{array}$$

Power moments of the Walsh Transform:

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^1 = q$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^2 = q^2$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^3 = q^2 N_{q,d}(1)$$

$$\sum_{b \in \mathbb{F}_q} W_{q,d}(b)^4 = q^2 \sum_{c \in \mathbb{F}_q} N_{q,d}(c)^2$$

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

Recall: $N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\}$ $\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

Recall:
$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\}$$

 $\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

$$\begin{array}{ll} \mathsf{Recall:} \ \mathsf{N}_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ & \Delta_{q,d} = \{\mathsf{N}_{q,d}(c) : c \in \mathbb{F}_q\} \end{array}$$

•
$$N_{q,d}(0) = 0$$
: $(x+1)^d \neq x^d$ since f is a permutation

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

$$\begin{array}{ll} \text{Recall:} \ N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\} \\ \\ \Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\} \end{array}$$

- $N_{q,d}(0) = 0$: $(x+1)^d \neq x^d$ since f is a permutation
- ▶ $N_{q,d}(1) \ge 2$: $(0+1)^d 0^d = 1$ and $((-1)+1)^d (-1)^d = 1$

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

Recall:
$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\}$$

 $\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$

- $N_{q,d}(0) = 0$: $(x+1)^d \neq x^d$ since f is a permutation
- ▶ $N_{q,d}(1) \ge 2$: $(0+1)^d 0^d = 1$ and $((-1)+1)^d (-1)^d = 1$
- If char(\mathbb{F}_q) is 2, then $N_{q,d}(c)$ is even for all c
- If char(𝔽_q) is odd, then N_{q,d}(2^{1−d}) is odd, and all other N_{q,d}(c) are even

•
$$(x+1)^d - x^d = ((-x-1)+1)^d - (-1-x)^d$$
, and

•
$$x = (-1 - x)$$
 if and only if $x = -1/2$

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

Recall:
$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\}$$

 $\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$

- $N_{q,d}(0) = 0$: $(x+1)^d \neq x^d$ since f is a permutation
- ▶ $N_{q,d}(1) \ge 2$: $(0+1)^d 0^d = 1$ and $((-1)+1)^d (-1)^d = 1$
- If char(\mathbb{F}_q) is 2, then $N_{q,d}(c)$ is even for all c
- If char(\mathbb{F}_q) is odd, then $N_{q,d}(2^{1-d})$ is odd, and all other $N_{q,d}(c)$ are even
 - $(x+1)^d x^d = ((-x-1)+1)^d (-1-x)^d$, and • x = (-1-x) if and only if x = -1/2
- ▶ So $|\Delta_{q,d}| \ge 2$ always

So gcd(d, q - 1) = 1; this makes d odd when $char(\mathbb{F}_q)$ is odd

Recall:
$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^d - x^d = c\}$$

 $\Delta_{q,d} = \{N_{q,d}(c) : c \in \mathbb{F}_q\}$

- $N_{q,d}(0) = 0$: $(x+1)^d \neq x^d$ since f is a permutation
- ▶ $N_{q,d}(1) \ge 2$: $(0+1)^d 0^d = 1$ and $((-1)+1)^d (-1)^d = 1$
- If char(\mathbb{F}_q) is 2, then $N_{q,d}(c)$ is even for all c
- If char(𝔽_q) is odd, then N_{q,d}(2^{1−d}) is odd, and all other N_{q,d}(c) are even

•
$$(x+1)^d - x^d = ((-x-1)+1)^d - (-1-x)^d$$
, and
• $x = (-1-x)$ if and only if $x = -1/2$

- ▶ So $|\Delta_{q,d}| \ge 2$ always
- ▶ If char(\mathbb{F}_q) is odd and *d* is nondegenerate, then $|\Delta_{q,d}| \ge 3$

A nice exponent over \mathbb{F}_q is a positive integer d with:

▶ *d* is invertible $(\gcd(d, q - 1) = 1$, so $x \mapsto x^d$ is a power permutation of \mathbb{F}_q), and

• $|\Delta_{q,d}| \leq 3$ (this includes degenerate exponents).

A nice exponent over \mathbb{F}_q is a positive integer d with:

- *d* is invertible (gcd(*d*, *q* − 1) = 1, so *x* → *x^d* is a power permutation of F_{*q*}), and
- $|\Delta_{q,d}| \leq 3$ (this includes degenerate exponents).

Examples of nice exponents when $char(\mathbb{F}_q) = 2$:

- Exponents producing APN permutations have Δ_{q,d} = {0,2}
- d = 5 when q = 64 produces $\Delta_{q,d} = \{0,4\}$
- d = q 2 when $q = 2^{2m}$ produces $\Delta = \{0, 2, 4\}$

A nice exponent over \mathbb{F}_q is a positive integer d with:

- *d* is invertible (gcd(*d*, *q* − 1) = 1, so *x* → *x^d* is a power permutation of F_{*q*}), and
- $|\Delta_{q,d}| \leq 3$ (this includes degenerate exponents).

Examples of nice exponents when $char(\mathbb{F}_q) = 2$:

- Exponents producing APN permutations have Δ_{q,d} = {0,2}
- d = 5 when q = 64 produces $\Delta_{q,d} = \{0,4\}$

►
$$d = q - 2$$
 when $q = 2^{2m}$ produces $\Delta = \{0, 2, 4\}$

Nice exponents when $char(\mathbb{F}_q)$ is odd:

- $N_{q,d}(2^{1-d})$ is odd,
- ▶ at least one $N_{q,d}(c)$ is zero (e.g., when c = 0), and
- ► the remaining N_{q,d}(c)'s (when d is nondegenerate) have a common positive even value.

A nice exponent over \mathbb{F}_q is a positive integer d with:

- *d* is invertible (gcd(*d*, *q* − 1) = 1, so *x* → *x^d* is a power permutation of F_{*q*}), and
- $|\Delta_{q,d}| \leq 3$ (this includes degenerate exponents).

Examples of nice exponents when $char(\mathbb{F}_q) = 2$:

- Exponents producing APN permutations have Δ_{q,d} = {0,2}
- d = 5 when q = 64 produces $\Delta_{q,d} = \{0,4\}$

•
$$d = q - 2$$
 when $q = 2^{2m}$ produces $\Delta = \{0, 2, 4\}$

Nice exponents when $char(\mathbb{F}_q)$ is odd:

- $N_{q,d}(2^{1-d})$ is odd,
- ▶ at least one $N_{q,d}(c)$ is zero (e.g., when c = 0), and
- ► the remaining N_{q,d}(c)'s (when d is nondegenerate) have a common positive even value.

Significance: nice exponents have a close connection to power permutations with three-valued Walsh transforms

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (K.-Langevin Nice Exponent Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is a nice exponent over \mathbb{F}_q , then 2 is in its differential spectrum (i.e., $N_{q,d}(c) = 2$ for some $c \in \mathbb{F}_q$)

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (K.-Langevin Nice Exponent Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is a nice exponent over \mathbb{F}_q , then 2 is in its differential spectrum (i.e., $N_{q,d}(c) = 2$ for some $c \in \mathbb{F}_q$)

Conjecture (K.-Langevin Optimist Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is an invertible exponent over \mathbb{F}_q (i.e., gcd(d, q - 1) = 1), then 2 is in its differential spectrum

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (K.-Langevin Nice Exponent Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is a nice exponent over \mathbb{F}_q , then 2 is in its differential spectrum (i.e., $N_{q,d}(c) = 2$ for some $c \in \mathbb{F}_q$)

Conjecture (K.-Langevin Optimist Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is an invertible exponent over \mathbb{F}_q (i.e., gcd(d, q - 1) = 1), then 2 is in its differential spectrum

Optimist

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (K.-Langevin Nice Exponent Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is a nice exponent over \mathbb{F}_q , then 2 is in its differential spectrum (i.e., $N_{q,d}(c) = 2$ for some $c \in \mathbb{F}_q$)

Conjecture (K.-Langevin Optimist Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is an invertible exponent over \mathbb{F}_q (i.e., gcd(d, q - 1) = 1), then 2 is in its differential spectrum

Optimist \Rightarrow Nice Exponent

Conjecture (Helleseth Three-Valued Conjecture, 1971) If \mathbb{F}_q is a field of characteristic p and order $q = p^{2^s}$, then no power permutation $f(x) = x^d$ of \mathbb{F}_q has a three-valued Walsh spectrum (when $W_{q,d}(0)$ is removed).

Proved by K. (2012, 2015) when p = 2, 3

Conjecture (K.-Langevin Nice Exponent Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is a nice exponent over \mathbb{F}_q , then 2 is in its differential spectrum (i.e., $N_{q,d}(c) = 2$ for some $c \in \mathbb{F}_q$)

Conjecture (K.-Langevin Optimist Conjecture, 2016) If char(\mathbb{F}_q) is odd and d is an invertible exponent over \mathbb{F}_q (i.e., gcd(d, q - 1) = 1), then 2 is in its differential spectrum

 $\mathsf{Optimist} \Rightarrow \mathsf{Nice Exponent} \Rightarrow \mathsf{Three-Valued}$

d = 3 is invertible over $\mathbb{F}_q \Leftrightarrow \gcd(3, q-1) = 1 \Leftrightarrow q \not\equiv 1 \pmod{3}$

 $\frac{d=3 \text{ is invertible over } \mathbb{F}_q \Leftrightarrow \gcd(3, q-1) = 1 \Leftrightarrow q \not\equiv 1 \pmod{3}}{\text{For } q \equiv 0 \pmod{3} \text{ (fields of characteristic 3):}}$

3 is degenerate, so $\Delta_{q,d} = \{0,q\}$ and 3 is nice

 $\frac{d=3 \text{ is invertible over } \mathbb{F}_q \Leftrightarrow \gcd(3, q-1) = 1 \Leftrightarrow q \not\equiv 1 \pmod{3}$ For $q \equiv 0 \pmod{3}$ (fields of characteristic 3):

3 is degenerate, so $\Delta_{q,d} = \{0,q\}$ and 3 is nice

For $q \equiv 2 \pmod{3}$

$$(x+1)^3 - x^3 = 3x^2 + 3x + 1$$

is quadratic and so

$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^3 - x^3 = c\} \le 2$$

so $\Delta_{q,d} \subseteq \{0,1,2\}$ and 3 is nice over \mathbb{F}_q

 $\frac{d=3 \text{ is invertible over } \mathbb{F}_q \Leftrightarrow \gcd(3, q-1) = 1 \Leftrightarrow q \not\equiv 1 \pmod{3}$ For $q \equiv 0 \pmod{3}$ (fields of characteristic 3):

3 is degenerate, so $\Delta_{q,d} = \{0,q\}$ and 3 is nice

For $q \equiv 2 \pmod{3}$

$$(x+1)^3 - x^3 = 3x^2 + 3x + 1$$

is quadratic and so

$$N_{q,d}(c) = \#\{x \in \mathbb{F}_q : (x+1)^3 - x^3 = c\} \le 2$$

so $\Delta_{q,d} \subseteq \{0,1,2\}$ and 3 is nice over \mathbb{F}_q

Summary (K.-Langevin, 2016): 3 is nice over \mathbb{F}_q if and only if $q \neq 1 \pmod{3}$

The Exponent d = q - 2

q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$

The Exponent d = q - 2

q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$

For $x \notin \{0, -1\}$, we have $(x + 1)^{q-2} - x^{q-2} = -\frac{1}{x(x+1)}$

The Exponent d = q - 2

q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$

For $x \notin \{0, -1\}$, we have $(x + 1)^{q-2} - x^{q-2} = -\frac{1}{x(x+1)}$ So for $x \notin \{0, -1\}$.

$$(x+1)^{q-2} - x^{q-2} = c \Leftrightarrow cx^2 + cx + 1 = 0$$

The Exponent d = q - 2q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$ For $x \notin \{0, -1\}$, we have $(x+1)^{q-2} - x^{q-2} = -\frac{1}{\sqrt{x+1}}$ So for $x \notin \{0, -1\}$. $(x+1)^{q-2} - x^{q-2} = c \Leftrightarrow cx^2 + cx + 1 = 0$ • $(x+1)^{q-2} - x^{q-2} = 1$ for x = 0, -1, or a root of $x^2 + x + 1$: $N_{q,d}(1) = \begin{cases} 3 & \text{if } q \equiv 0 \pmod{3}, \\ 4 & \text{if } q \equiv 1 \pmod{3}, \\ 2 & \text{if } a \equiv 2 \pmod{3} \end{cases}$

The Exponent d = q - 2q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$ For $x \notin \{0, -1\}$, we have $(x+1)^{q-2} - x^{q-2} = -\frac{1}{\sqrt{x+1}}$ So for $x \notin \{0, -1\}$. $(x+1)^{q-2} - x^{q-2} = c \Leftrightarrow cx^2 + cx + 1 = 0$ • $(x+1)^{q-2} - x^{q-2} = 1$ for x = 0, -1, or a root of $x^2 + x + 1$: $N_{q,d}(1) = \begin{cases} 3 & \text{if } q \equiv 0 \pmod{3}, \\ 4 & \text{if } q \equiv 1 \pmod{3}, \\ 2 & \text{if } q \equiv 2 \pmod{3} \end{cases}$

For $c \neq 1$, we have $N_{q,d}(c) \leq 2$

The Exponent d = q - 2q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$ For $x \notin \{0, -1\}$, we have $(x+1)^{q-2} - x^{q-2} = -\frac{1}{\sqrt{x+1}}$ So for $x \notin \{0, -1\}$, $(x+1)^{q-2} - x^{q-2} = c \Leftrightarrow cx^2 + cx + 1 = 0$ • $(x+1)^{q-2} - x^{q-2} = 1$ for x = 0, -1, or a root of $x^2 + x + 1$: $N_{q,d}(1) = \begin{cases} 3 & \text{if } q \equiv 0 \pmod{3}, \\ 4 & \text{if } q \equiv 1 \pmod{3}, \\ 2 & \text{if } q \equiv 2 \pmod{3} \end{cases}$

For $c \neq 1$, we have $N_{q,d}(c) \leq 2$ Recall: $N_{q,d}(c)$ is even except for $N_{q,d}(2^{1-d})$ when $q \equiv 1 \pmod{2}$ The Exponent d = q - 2q-2 is always invertible over \mathbb{F}_q and $x^{q-2} = x^{-1}$ for $x \neq 0$ For $x \notin \{0, -1\}$, we have $(x+1)^{q-2} - x^{q-2} = -\frac{1}{x(x+1)}$ So for $x \notin \{0, -1\}$, $(x+1)^{q-2} - x^{q-2} = c \Leftrightarrow cx^2 + cx + 1 = 0$ • $(x+1)^{q-2} - x^{q-2} = 1$ for x = 0, -1, or a root of $x^2 + x + 1$: $N_{q,d}(1) = \begin{cases} 3 & \text{if } q \equiv 0 \pmod{3}, \\ 4 & \text{if } q \equiv 1 \pmod{3}, \end{cases}$

$$\begin{cases} q \equiv 1 \pmod{3}, \\ q \equiv 2 (q + 1), \\ q = 2 (q +$$

▶ For $c \neq 1$, we have $N_{q,d}(c) \leq 2$ Recall: $N_{q,d}(c)$ is even except for $N_{q,d}(2^{1-d})$ when $q \equiv 1 \pmod{2}$ Consequence (K.-Langevin, 2016): q - 2 is a nice exponent for \mathbb{F}_q

if and only if $q \not\equiv 1 \pmod{6}$

The Exponent $2\sqrt{q} - 1$

On this slide: p is prime and $q = p^n$ with n even

So then \sqrt{q} is an integer

The Exponent $2\sqrt{q} - 1$

On this slide: p is prime and $q = p^n$ with n even

So then \sqrt{q} is an integer

Lemma (K.-Pacheco-Sapozhnikov, 2019)

Suppose $q = p^n$ with n even and $d = 2p^{n/2} - 1 = 2\sqrt{q} - 1$. Then d is invertible over \mathbb{F}_q if and only if $\sqrt{q} \not\equiv 2 \pmod{3}$.

The Exponent $2\sqrt{q} - 1$

On this slide: p is prime and $q = p^n$ with n even

So then \sqrt{q} is an integer

Lemma (K.-Pacheco-Sapozhnikov, 2019)

Suppose $q = p^n$ with n even and $d = 2p^{n/2} - 1 = 2\sqrt{q} - 1$. Then d is invertible over \mathbb{F}_q if and only if $\sqrt{q} \not\equiv 2 \pmod{3}$.

Theorem (K.-Pacheco-Sapozhnikov, 2019) If $d = 2\sqrt{q} - 1$ is invertible over \mathbb{F}_q , then it is nice, with

- $N_{q,d}(1) = \sqrt{q}$, and
- ► all other N_{q,d}(c)'s in {0,2}.

Method of proof: fancy algebra.

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

Let $q = p^n$ with p an odd prime. Then (up to equivalence) the following are the only nice exponents over \mathbb{F}_q :

▶ *d* = 1 *is always nice (it is degenerate),*

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

- ▶ d = 1 is always nice (it is degenerate),
- If d = 3, then d is nice if $q \not\equiv 1 \pmod{3}$,

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

- ▶ d = 1 is always nice (it is degenerate),
- If d = 3, then d is nice if $q \not\equiv 1 \pmod{3}$,
- If d = q 2, then d is nice if $q \not\equiv 1 \pmod{6}$,

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

- ▶ d = 1 is always nice (it is degenerate),
- If d = 3, then d is nice if $q \not\equiv 1 \pmod{3}$,
- If d = q 2, then d is nice if $q \not\equiv 1 \pmod{6}$,
- If n is even, then $d = 2\sqrt{q} 1$ is nice if $\sqrt{q} \not\equiv 2 \pmod{3}$.

We performed a computer search for nice exponents for fields of characteristics from 2 to 53 and of orders up to around 10^6 (for some characteristics considerably larger than that)

Conjecture

- ▶ d = 1 is always nice (it is degenerate),
- If d = 3, then d is nice if $q \not\equiv 1 \pmod{3}$,
- If d = q 2, then d is nice if $q \not\equiv 1 \pmod{6}$,
- If n is even, then $d = 2\sqrt{q} 1$ is nice if $\sqrt{q} \not\equiv 2 \pmod{3}$.
- ▶ If p = 5 and n is odd, then $d = (5^m + 1)/2$ is nice if m < n with m odd and gcd(m, n) = 1.