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Power Permutations

Power function on Fg: f: Fq — Fq with f(x) = x9 for some
positive integer d

Power permutation of Fy: a power function f(x) = x9 on Fy is a
permutation of Fy if and only if gcd(d, g —1) =1

If ged(d, g — 1) = 1, we say that d is an invertible exponent over
Fq: if e=1/d (mod q — 1), then x — x¢ is the inverse function
of x -+ x4

Cryptographic significance: arithmetically easy to implement power
permutations within cryptosystems

Want power permutations that are resistant to linear and
differential cryptanalysis
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Linear Functionals
Let Fy be a finite field of characteristic p and order g = p”

Let Tr: F; — IF, be the absolute trace:

Tr(x) =X xP e xPT
Then for any a € Fq, we have an F,-linear functional:

Fg—TFp
x +— Tr(ax)
Every Fp-linear functional of Iy is uniquely represented in this way
If ai,...,a, form an [Fy-basis of Fn, then we have the I -linear
isomorphism:
Fg=Fp —TF,
x = (Tr(aix), ..., Tr(apx)),

So we call our Fp-linear functionals x — Tr(ax) (with a # 0)
component linear functionals
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Nonlinearity
Let Fy be a finite field of characteristic p and order g = p”
If f: Fq — Ty, then for each a € F, we get a component function
of f:
Fq —Fp
x> Tr(af(x))
To resist linear cryptanalysis: want component functions of f

uncorrelated with the component linear functionals x — Tr(bx)
(for all b e Fy)

When p = 2, Z (—1)Tr(EF () =Tr(5x)
x€F,
= # of agreements between Tr(af(x)) and Tr(bx)
— # of disagreements between Tr(af(x)) and Tr(bx)

Notice: x ~— (—1)T(*) is the canonical additive character of F,,
into {£1} C C* (when Fy is characteristic 2)
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Walsh Transform
If Fy has characteristic 2, want erFq(—l)Tr(af(X))*Tr(bX) to be
about 0

For IF of arbitrary characteristic p, let (, = exp(27i/p) and then
define the canonical additive character of 4 to be

Vg :Fq — (Cp) S C*

Tr(x Py...4x9/pP
ba(x) = ') = G

We define the Walsh Transform of f to be the function
Mﬁ'ZE} X Fq — C
We(a,b) = Y wg(af(x) — bx) = Y ¢ DT>

x€Fq x€Fq

And we define the Walsh Spectrum of f to be
{We(a,b) :a€ Fy,beFy} (a=0 tells us nothing about f)

Want every element of this spectrum to have small magnitude
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Walsh Spectrum of a Power Permutation
thq: Fqg — C* is the canonical additive character of g

f(x) = x? is a power permutation of Fy (so gcd(d,q — 1) = 1)
For a € IF;, b € Fg, the Walsh transform is

We(a, b) = Z Yq(ax?d — bx),
x€Fq
which is a Weil sum of a binomial, which can be reparameterized
with y = a'/9x

Wf(a, b) = Z wq(yd _ ba_l/dy) _ Wf(l,a_l/db)

y€lq
So define
Wa.a(b) = D tq(x? — bx),
x€F,
and then the Walsh spectrum of f(x) = x9 over F,, is

{Wq’d(b) b e Fq}
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Equivalent Exponents
Suppose char(IF )=p d€Z4, and b eFy. Then

Wa pa(b Z Yql chl bx) Z wq(Xd — bx) = Wy 4(b),
x€Fq x€lFq

so that Walsh spectrum for pd is the same as that for d

If d has an inverse modulo g — 1 (x — x? is a power permutation),

Wq1/a(b Zw (xM —

x€lFq

— Z ¢ -1 d l/d b( b 1yd))
y€Fq

= > wgly? — b7 Vy) = W g(b ),
y€Fq

(and Wy 1/4(0) =0 = W 4(0)), so the Walsh spectrum for 1/d is
the same as that for d.

Two exponents d, d’ are equivalent if d’ = pXd (mod q — 1) or
d' = pkd~! (mod q — 1) (when the inverse exists).
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Number of Values in the Walsh Spectrum
char(F,) = p and f(x) = x9 is a power permutation of F,

If d is equivalent to 1 (i.e., a power of p modulo g — 1), then

Wya(b) = Wyi(b) = 3 thg(x* — bx) = {q ifb=1

<eF, 0 otherwise

So the Walsh spectrum is {0, g} and we say that d and f(x) = x¢
are degenerate over [

Helleseth: spectrum of power permutation (with W, 4(0) removed)
has at least three distinct values when d is nondegenerate

If Fq is of characteristic p and order p":
» if n not a power of 2, we know a d that produces a Walsh
spectrum (Wg 4(0) removed) with exactly three values
» Conjecture (Helleseth 1971): if n is a power of 2, then no d
has spectrum (Wg 4(0) removed) with exactly three values
» This conjecture has been proved when p =2 (K., 2012) or
p = 3 (K., 2015), but is open for p > 5
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Differential Multiplicities
Let f: Fq — Iy

For a, b € Fy, the differential multiplicity of f with respect to a
and b is the number &¢(a, b) of solutions (x,y) € F2 of the system

y—x=a
fly) = f(x) = b,
or equivalently
df(a, b) =#{x € Fq: f(x + a) — f(x) = b}.
We do not typically consider a = 0 because

qg ifb=0,

0 otherwise.

6f(0a b) = {



Differential Spectrum
f:Fqg—Fq
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Differential Spectrum

f:Fqg—Fq
differential mult.: d¢(a, b) = #{x € Fq : f(x+ a) — f(x) = b}
The differential spectrum of f is
A¢ ={0f(a,b):a€ F*,be F}.
The differential uniformity of f is

df =maxAf = max d¢(a,b)
acF* beF

Want dr as as small as possible to counter differential cryptanalysis

Perfect nonlinear (PN) or planar function: x — f(x + a) — f(x) is
a permutation for every a € F*, so Af = {1} and §r =1

PN functions exist only if char(IFq) is odd; are never permutations

In characteristic 2, each d¢(a, b) is even, so the best possible is an
almost perfect nonlinear (APN) function: Af = {0,2} and 6r =2

10
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ForaEIF; and b € [y,
Se(a,b) = #{x € Fy: (x +a)! —x? = b}
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Differential Spectrum of a Power Function
Let f be a power function f(x) = x4 on Fy

ForaEIF; and b € [y,

Se(a,b) = #{x € Fy: (x +a)! —x? = b}
=#{y €Fq: (v +1)? —y? = b/a’}
= 6¢(1, b/a%).

So for each ¢ € Fy, define the differential multiplicity for x4 over
Fq at ¢ to be

Nq,d(c) = X»—)xd(]-a C) = #{X € IFq : (X + 1)d — Xd = C},

so the power function f(x) = x? on F, has differential spectrum
(Af) equal to
Dgd = {Ngd(c): c €Fq}

Important observation: }° .y Ngd(c) = ¢

11
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If d has an inverse modulo ¢ — 1 (x — x¢ is a power permutation),
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Equivalent Exponents

Suppose char(Fq) = p, d € Z, and c € F,. Then

Ny pa(cP) = #{x € Fg : (x + 1)P? — xP9 = cP}
=#{xeFy: (x+1)? —x?=c} = N, 4(c),

so that Ay pg = Ay 4.

If d has an inverse modulo g — 1 (x — x? is a power permutation),
Ng1/a(1/c?) = #{x € Fq: (x + )/ — x/d = 71/}
=#{x eFg: (x"/+ M) —x=1}
=#{y €Fq: (c Yy + M) — (c7Hdy)d =1}
= #{y €Fq: (y+1)? =y = c} = Ny a(c),

(and Ng1/4(0) = 0 = Ng4(0)), so then Ay /gy = Agq.

Recall: Two exponents d, d’ are equivalent if d’ = p*d
(mod g —1) or d’ = p*d~! (mod g — 1) (when the inverse exists).
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If d is degenerate (i.e., equivalent to 1, which is to say, equal to a
power of p modulo g — 1) then

qg ifc=1,

Nq7d(cd) = Nq71(c1) =#{xeFy,: (X+1)1—Xl =c}= _
0 otherwise.
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Degeneracy
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Agq = {Nq,d( c):celFg}

Basic results:

> Ng.a(0) =0: (x+ 1) # x9 since f is a permutation

> Nga(l)>2: (0+1)9—09=1and ((-1)+1)? - (-1)? =1
» If char(IFq) is 2, then N 4(c) is even for all ¢
>

If char(FF,) is odd, then N, 4(2'~9) is odd, and all other
Ng.4(c) are even
» (x+ 1) —x4=((—x—-1)+1)? — (-1 —x)9, and
» x=(—1—x)ifand only if x = —1/2
» So |Ag 4] > 2 always
» If char(IFq) is odd and d is nondegenerate, then |Ag 4| > 3
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Nice Exponent

A nice exponent over g is a positive integer d with:

» d is invertible (gcd(d, g — 1) = 1, so x — x¢

permutation of Fg), and

is a power

> |Agq| < 3 (this includes degenerate exponents).
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is a power

> |Agq| < 3 (this includes degenerate exponents).
Examples of nice exponents when char(Fg) = 2:
» Exponents producing APN permutations have A, 4 = {0,2}
» d =5 when g = 64 produces Ag 4 = {0,4}
» d = g — 2 when g = 22" produces A = {0,2,4}
Nice exponents when char(Fg) is odd:
> Ny a(2179) is odd,
> at least one N, 4(c) is zero (e.g., when ¢ = 0), and

> the remaining Ny 4(c)'s (when d is nondegenerate) have a
common positive even value.

Significance: nice exponents have a close connection to power
permutations with three-valued Walsh transforms
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Nice Exponents and Three-Valued Walsh Transforms
Conjecture (Helleseth Three-Valued Conjecture, 1971)

IfFy is a field of characteristic p and order q = p?’, then no power
permutation f(x) = x4 of Fy has a three-valued Walsh spectrum
(when Wg 4(0) is removed).
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The Exponent d =3

d = 3 is invertible over Fy < gcd(3,g—1) =1 < g# 1 (mod 3)

For g =0 (mod 3) (fields of characteristic 3):

3 is degenerate, so Ay 4 = {0, g} and 3 is nice

For g =2 (mod 3)
(x+1)P° —x>*=3x>+3x+1
is quadratic and so
Nga(c) = #{x €Fq: (x +1)° = x> =c}< 2

so Agq € {0,1,2} and 3 is nice over Fy

Summary (K.-Langevin, 2016): 3 is nice over g if and only if
g% 1 (mod 3)
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q — 2 is always invertible over F; and x972 = x71 for x £ 0

For x ¢ {0, —1}, we have (x + 1)‘7*2 _ x92 — _ﬁ

So for x ¢ {0, —1},
(x+1)92 - x72=coo® +ox+1=0
» (x+1)972 - x972=1 for x =0, -1, or a root of x* + x + 1:
3 ifg=0 (mod3),
Ngd(l)=4¢4 ifg=1 (mod 3),
2 ifg=2 (mod3)

» For ¢ # 1, we have N, 4(c)< 2
Recall: N, 4(c) is even except for N 4(2'~9) when g =1 (mod 2)

Consequence (K.-Langevin, 2016): g — 2 is a nice exponent for I
if and only if g #1 (mod 6)
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The Exponent 2,/q — 1

On this slide: p is prime and g = p” with n even

So then ,/q is an integer

Lemma (K.-Pacheco-Sapozhnikov, 2019)
Suppose q = p" with n even and d = 2p"/? —1=2,/qg— 1. Then
d is invertible over Fq if and only if \/q # 2 (mod 3).

Theorem (K.-Pacheco-Sapozhnikov, 2019)
Ifd = 2/q—1is invertible over F g, then it is nice, with

» Nga(1l) =/q, and
» all other Ng 4(c)’s in {0,2}.

Method of proof: fancy algebra.
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A Conjecture

We performed a computer search for nice exponents for fields of
characteristics from 2 to 53 and of orders up to around 10° (for
some characteristics considerably larger than that)

Conjecture

Let g = p" with p an odd prime. Then (up to equivalence) the
following are the only nice exponents over Fg:

» d =1 is always nice (it is degenerate),

» If d =3, then d is nice if g 1 (mod 3),

» Ifd =q—2, then d is nice if g 1 (mod 6),

» If nis even, then d = 2,/q — 1 is nice if \/q # 2 (mod 3).

» If p=>5 and n is odd, then d = (5™ +1)/2 is nice if m < n
with m odd and ged(m, n) = 1.



