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Content of the talk

APN functions — CCZ-equivalence to permutations.

We provide computational proof of CCZ-inequivalence to a
permutations for functions from known families up to
dimension F12 (with a single known exception).

We show a new EA invariant for component—wise plateaued
functions.

We provide a proof of CCZ~inequivalence of x* + Tr(x°) to a
permutation in doubly even extensions.



Definitions

Definition (APN function)

Let f be a function on Fon, we say that f is almost perfect
nonlinear function, if for all a € F5, and all b € [F» the equation

f(x)+f(x+a)=>b
has always either 0 or 2 solutions:

Definition (Trace)
Let n > m, m|n. Then we call the function from F2» to Fym such
that:

the trace function from Fan to Fom.
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Definitions

Definition

Walsh transform Let f be a function on Fon. We call a function

Flu,v) = D (=1)TOFCDTTE) = 3™y (vf (x) + ux)
x€Fan x€Fan

the Walsh transform of f.

~

Zs = {(u,v) € Fan x Fon : f(u,v) =0}

NBy = {v € Fan : £(0,v) # £2"/2}



Notions of equivalence

Definition (Extended Affine (EA) equivalence)
Let f, g be functions on Fan, we say that f is EA—equivalent to g if

g(x) = (L1 o foly)(x)+ L3(x)
for some Ly, L, affine permutations and L3 affine function.

Definition (Carlet—Charpin—Zinoviev (CCZ) equivalence)
Let f, g be functions on Fan, we say that f is CCZ—-equivalent to g
if there exists an affine mapping M such that

{(x,f(x)),x € Fan} = M({(x, g(x)),x € Fan}).
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Current state of knowledge

e We have one example of an APN permutation on Fys.

(K.A. Browning, J.F. Dillon, M.T. McQuistan and A.J. Wolfe,
2010)

e We have computational proof, that up to dimension 10 there is
no other APN permutation among known APN functions.
(same paper)

e We know, that in dimension 4 there are none. (e.g.

M. Calderini, M. Sala and I. Villa, 2015)



Table: Known infinite families of APN multinomial functions on Fyzn

Polynomial

Conditions

X2HL g2 -1 )22t

n =3t ged(t,3) = ged(s,3t) =1
t>3, i=st(mod3), r=3-1i
A € F is primitive

X2HL g2 -1y 22t

n = 4t, gcd(t,2) = ged(s, 2t) = 1
t>3, i=st(mod4), r=4—1i,
A € T is primitive

AXZHL 27 X2 L pX2THL L me  x2md

n=2m, modd, ¢; € Fom,
ged(s,m) =1, s odd,
A, B € F is primitive

AXZTTURE A2 2L | pyatere

n=3t, ged(t,3) = ged(s,3t) = 1,
3|t + s, A€ Fis primitive, b € Fpe

A2t X2TTIARES L ANl | py2n i

n = 3t, ged(t,3) = ged(s,3t) =1,
3|t +s, Ae Fis primitive, b € Fpr

AT XTI L AX2THL L px 27T L L 20 x 2142

n = 3t, ged(t,3) = ged(s,3t) =1,
3|t +s, A€ T is primitive,
b,c € Fpe, bc #1

X242k L pxatl 4 oxa@*+2Y)

Cisa (g — 1)st power but not a (g — 1)(2/ + 1)st power,

n=2m, m odd,

CBY+ B

X(X? 4 X9+ €X?9) + X (COXT + AX?“0) 4 XCH+1)a

C satisfies X241+ CX? 4+ C?"° X + 1 is irreducible, A € F\Fom

n=2m, ged(n, k) =1,

X3 +attrp(a3X?)




Dillon’s approach

Theorem

A function f is CCZ-equivalent to a permutation if and only if
there exist spaces U,V in Z¢|J{(0,0)}, such that

UNV ={(0,0)} and dim(U) = dim(V) = n.

Note that this is an if-and—only—if condition.
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Theorem

If a component-wise plateaued function f is CCZ-equivalent to a
permutation, then there must exist subspaces U,V in NB¢ such
that UL VL = {0} (ie. U+ V =T). In particular dim(U) +
dim(V) > n.



Our approach

Theorem

If a component-wise plateaued function f is CCZ-equivalent to a
permutation, then there must exist subspaces U,V in NB¢ such
that UL VL = {0} (ie. U+ V =T). In particular dim(U) +
dim(V) > n.

Corollary

If a component—wise plateaued function f is CCZ—equivalent to a
function, then there must exist a subspace in NB¢ of dimension
n/2.

Note that none of these is an if-and—only—if condition.
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Speed

e Standard approach basically searches Z¢ (|Z¢| =~ 2*™=2) for
two trivially intersecting subspaces of dimension n.

e Our approach only requires searching for two trivially
intersecting subspaces of dimension n/2 in NBy. It is known,
that for component-wise plateaued APN functions we have
INBf| < +/|Zf| — therefore this approach is faster both
practically and asymptotically.
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EA Invariant

Theorem (EA Invariant)

Let f and g be EA—equivalent, which are both plateaued. Let N;
and M; denote the numbers of i—dimensional subspaces in NBs and
NBg respectively. Then N; = M; for every i € N.

As it is known, that for quadratic APN functions the EA and CCZ
equivalence coincide (Yoshiara, 2011) it follows, that for these
functions it is even a CCZ invariant.
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Proof.
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EA Invariant

Proof.
Let g = Li(F(La(x))) + Ls(x).

@)= x(ag(x)) =Y x(a(Liof o Ly(x)) + aLs(x))

x€eF xeF

Rewrite using L* as the adjoint mapping to L, and x = L, *(y):

Y X(F0)Li(a) +y(Ls o L) (@) = F((Ls o L3)"(a), Li(a)).

x€eF

f and g are plateaued. Therefore supposing o € NBg
(8(0, ) # £2"/2), we have that

F((Ls o LyY (a), Li(a)) # 272 & F((0, Li(a)) # 272,

Therefore every U C NB, is mapped to L(U) C NBy.
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Results

e For F512 all functions of all known (to authors) families were
proven not to be CCZ—-equivalent to a permutation.

e Partial CCZ-inequivalence results were found for some
function families.



Results

Table: Calculated maximal dimensions of subspaces in NB¢

# | n=6|n=8|n=10 | n=12
1 |- - - 4 (3)
2 |- - - 4

3 |2 - 4 -

4 | 3f - - 4 (3)
5 | 3f - - 4

6 | 3f - - 3

7 |2 : 4 ;

8 |2 2 4 3

9 | 3° 3 5°° 4

"1 —in this family in this dimension there are functions which are

equivalent to the Dillon’s APN permutation.
"o s just x> which is not CCZ—equivalent to a permutation.
— only one subspace of the stated dimension - IFg.

1 oon



Table: Currently known results on CCZ—inequivalence to permutations for
APN function classes

n=4k | n=4k+?2
Gold v v F. Gologlu and P. Langevin
Kasami v 7 F. Gologlu and P. Langevin
S+Tr(x%) | v ? here
Dobbertin ? ?




Results

Theorem
Let F =Fg2, g =2™, meven. Then x> + Tr(x%) is not
CCZ-equivalent to a permutation on .
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Results

For the proof we will require the following lemmata. From now on
C={a:acF}.

Lemma (Carlitz)

q° ifa=0
Zx(ax3) = (-1)™1l2q ifacC
x€F (=1)mq ifag C

Lemma (Gologlu and Langevin)

Let Fy2m, m even. Then there is no subspace in C of dimension m.

Lemma
Let Fy2m, m even. Then there for every (m — 1)—dimensional
subspace V in C it holds that [V C| = 1.
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Proof of the last lemma
Consider >_ o\ Yoy X(vx3), and sum it in two ways.

q° —2qf—1 ZZXVX (3\VLﬂCH—1)

veV xeF

v+ Cl=1

Proof

Suppose there is a vector space W of dimension m in NB,s  y(x9).

e Tr(w) =0 for every w € W. Then
> ver X(wx® + wTr(x%)) = 3, cp x(wx?). Using Lemma
(Gologlu and Langevin), we can dismiss this option.

e Tr(w) = 0 for half of the elements of W. Let V = W () H,
a€ W :Tr(a) =1 Then >, px(wx® + wTr(x%)) =
2xer X(0P) + L X((v + a)x? + 7).
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Proof (cont.)

0 (impossible (Bracken 2007))

Zx((v +a)x3 +x%) ={ —2¢
xeF +2q

Consider >° oy 2 cr X((v + a)x® + x9).

4qM — ¢? —QqM—2qf—M ST3 Ty +a)xd +x%) =

veV xeF
3
= Zx(xg + ax®) Z x(vx®) = g + 7(]
xeF veV
o 4gM — g = 7 - 37" = —q — cannot happen
o 4gM — ¢® = 7+ 37" = 2g — also cannot happen
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Summary

e As of now, no known APN functions are CCZ—equivalent to a
permutation in Fy12

e We have a new EA-invariant for component—wise plateaued
functions.

e We proven CCZ-inequivalence of x3 + Tr(x°) to a
permutation in doubly even extensions.



Thank you for your attention!



