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Content of the talk

• APN functions � CCZ�equivalence to permutations.

• We provide computational proof of CCZ�inequivalence to a

permutations for functions from known families up to

dimension F212 (with a single known exception).

• We show a new EA invariant for component�wise plateaued

functions.

• We provide a proof of CCZ�inequivalence of x3 + Tr(x9) to a

permutation in doubly even extensions.
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De�nitions

De�nition (APN function)

Let f be a function on F2n , we say that f is almost perfect

nonlinear function, if for all a ∈ F∗2n and all b ∈ F2n the equation

f (x) + f (x + a) = b

has always either 0 or 2 solutions:

De�nition (Trace)

Let n > m, m|n. Then we call the function from F2n to F2m such

that:

trnm(α) =

n

m
−1∑

i=0

α2
mi

,

the trace function from F2n to F2m .



De�nitions

De�nition
Walsh transform Let f be a function on F2n . We call a function

f̂ (u, v) =
∑
x∈F2n

(−1)Tr(vf (x))+Tr(ux) =
∑
x∈F2n

χ(vf (x) + ux)

the Walsh transform of f .

Zf = {(u, v) ∈ F2n × F2n : f̂ (u, v) = 0}

NBf = {v ∈ F2n : f̂ (0, v) 6= ±2n/2}
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Notions of equivalence

De�nition (Extended A�ne (EA) equivalence)

Let f , g be functions on F2n , we say that f is EA�equivalent to g if

g(x) = (L1 ◦ f ◦ L2)(x) + L3(x)

for some L1, L2 a�ne permutations and L3 a�ne function.

De�nition (Carlet�Charpin�Zinoviev (CCZ) equivalence)

Let f , g be functions on F2n , we say that f is CCZ�equivalent to g

if there exists an a�ne mapping M such that

{(x , f (x)), x ∈ F2n} = M({(x , g(x)), x ∈ F2n}).



Current state of knowledge

• We have one example of an APN permutation on F26 .

(K.A. Browning, J.F. Dillon, M.T. McQuistan and A.J. Wolfe,

2010)

• We have computational proof, that up to dimension 10 there is

no other APN permutation among known APN functions.

(same paper)

• We know, that in dimension 4 there are none. (e.g.

M. Calderini, M. Sala and I. Villa, 2015)
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Table: Known in�nite families of APN multinomial functions on F22n

# Polynomial Conditions

1 X 2s+1 + A2t−1X 2it+2rt+s

n = 3t, gcd(t, 3) = gcd(s, 3t) = 1

t ≥ 3, i ≡ st (mod 3), r = 3− i ,

A ∈ F is primitive

2 X 2s+1 + A2t−1X 2it+2rt+s

n = 4t, gcd(t, 2) = gcd(s, 2t) = 1

t ≥ 3, i ≡ st (mod 4), r = 4− i ,

A ∈ F is primitive

3 AX 2s+1 + A2mX 2m+s+2m + BX 2m+1 +
∑m−1

i=1 ciX
2m+i+2i

n = 2m, m odd, ci ∈ F2m ,

gcd(s,m) = 1, s odd,

A,B ∈ F is primitive

4 AX 2n−t+2t+s

+ A2tX 2s+1 + bX 2t+s+2s n = 3t, gcd(t, 3) = gcd(s, 3t) = 1,

3|t + s, A ∈ F is primitive, b ∈ F2t

5 A2tX 2n−t+2t+s

+ AX 2s+1 + bX 2n−t+1 n = 3t, gcd(t, 3) = gcd(s, 3t) = 1,

3|t + s, A ∈ F is primitive, b ∈ F2t

6 A2tX 2n−t+2t+s

+ AX 2s+1 + bX 2n−t+1 + cA2t+1X 2t+s+2s
n = 3t, gcd(t, 3) = gcd(s, 3t) = 1,

3|t + s, A ∈ F is primitive,

b, c ∈ F2t , bc 6= 1

7 X 22k+2k + BX q+1 + CX q(22k+2k)
n = 2m, m odd,

C is a (q − 1)st power but not a (q − 1)(2i + 1)st power,
CBq 6= B

8 X (X 2k + X q + CX 2kq) + X 2k (CqX q + AX 2kq) + X (2k+1)q n = 2m, gcd(n, k) = 1,

C satis�es X 2i+1 + CX 2i + C 2n/2X + 1 is irreducible, A ∈ F\F2m

9 X 3 + a−1trn1(a
3X 9)



Dillon's approach

Theorem
A function f is CCZ�equivalent to a permutation if and only if

there exist spaces U,V in Zf
⋃
{(0, 0)}, such that

U
⋂
V = {(0, 0)} and dim(U) = dim(V ) = n.

Note that this is an if�and�only�if condition.



Our approach

Theorem
If a component�wise plateaued function f is CCZ�equivalent to a

permutation, then there must exist subspaces U,V in NBf such

that U⊥
⋂
V⊥ = {0} (i.e. U + V = F). In particular dim(U) +

dim(V ) ≥ n.

Corollary

If a component�wise plateaued function f is CCZ�equivalent to a

function, then there must exist a subspace in NBf of dimension

n/2.

Note that none of these is an if�and�only�if condition.
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Speed

• Standard approach basically searches Zf (|Zf | ≈ 24m−2) for
two trivially intersecting subspaces of dimension n.

• Our approach only requires searching for two trivially

intersecting subspaces of dimension n/2 in NBf . It is known,

that for component�wise plateaued APN functions we have

|NBf | <
√
|Zf | � therefore this approach is faster both

practically and asymptotically.
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EA Invariant

Theorem (EA Invariant)

Let f and g be EA�equivalent, which are both plateaued. Let Ni

and Mi denote the numbers of i�dimensional subspaces in NBf and

NBg respectively. Then Ni = Mi for every i ∈ N.

As it is known, that for quadratic APN functions the EA and CCZ

equivalence coincide (Yoshiara, 2011) it follows, that for these

functions it is even a CCZ invariant.
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EA Invariant

Proof.
Let g = L1(f (L2(x))) + L3(x).

ĝ(0, α) =
∑
x∈F

χ(αg(x)) =
∑
x∈F

χ(α(L1 ◦ f ◦ L2(x)) + αL3(x))

Rewrite using L∗ as the adjoint mapping to L, and x = L−12 (y):∑
x∈F

χ(f (y)L∗1(α) + y(L3 ◦ L−12 )∗(α)) = f̂ ((L3 ◦ L−12 )∗(α), L∗1(α)).

f and g are plateaued. Therefore supposing α ∈ NBg

(ĝ(0, α) 6= ±2n/2), we have that

f̂ ((L3 ◦ L−12 )∗(α), L∗1(α)) 6= ±2n/2 ⇔ f̂ ((0, L∗1(α)) 6= ±2n/2.

Therefore every U ⊆ NBg is mapped to L∗1(U) ⊆ NBf .



EA Invariant

Proof.
Let g = L1(f (L2(x))) + L3(x).
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Results

• For F212 all functions of all known (to authors) families were

proven not to be CCZ�equivalent to a permutation.

• Partial CCZ�inequivalence results were found for some

function families.
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Results

Table: Calculated maximal dimensions of subspaces in NBf

# n = 6 n = 8 n = 10 n = 12

1 - - - 4 (3)

2 - - - 4

3 2 - 4 -

4 3† - - 4 (3)

5 3† - - 4

6 3† - - 3

7 2 - 4 -

8 2 2 4 3

9 3◦ 3 5◦◦ 4

”†” � in this family in this dimension there are functions which are

equivalent to the Dillon's APN permutation.

”◦” � is just x3 which is not CCZ�equivalent to a permutation.

”◦◦” � only one subspace of the stated dimension � Fq.



Table: Currently known results on CCZ�inequivalence to permutations for
APN function classes

n = 4k n = 4k + 2

Gold X X F. Gölo§lu and P. Langevin

Kasami X ? F. Gölo§lu and P. Langevin

x3 + Tr(x9) X ? here

Dobbertin ? ?



Results

Theorem
Let F = Fq2 , q = 2m, m even. Then x3 + Tr(x9) is not
CCZ�equivalent to a permutation on F.



Results

For the proof we will require the following lemmata. From now on

C = {a3 : a ∈ F∗}.

Lemma (Carlitz)

∑
x∈F

χ(ax3) =


q2 if a = 0

(−1)m+12q if a ∈ C

(−1)mq if a /∈ C

Lemma (Gölo§lu and Langevin)

Let F22m , m even. Then there is no subspace in C of dimension m.

Lemma
Let F22m , m even. Then there for every (m − 1)�dimensional
subspace V in C it holds that |V⊥

⋂
C | = 1.



Results

For the proof we will require the following lemmata. From now on

C = {a3 : a ∈ F∗}.

Lemma (Carlitz)

∑
x∈F

χ(ax3) =


q2 if a = 0

(−1)m+12q if a ∈ C

(−1)mq if a /∈ C

Lemma (Gölo§lu and Langevin)

Let F22m , m even. Then there is no subspace in C of dimension m.

Lemma
Let F22m , m even. Then there for every (m − 1)�dimensional
subspace V in C it holds that |V⊥

⋂
C | = 1.



Results

For the proof we will require the following lemmata. From now on

C = {a3 : a ∈ F∗}.

Lemma (Carlitz)

∑
x∈F

χ(ax3) =


q2 if a = 0

(−1)m+12q if a ∈ C

(−1)mq if a /∈ C

Lemma (Gölo§lu and Langevin)

Let F22m , m even. Then there is no subspace in C of dimension m.

Lemma
Let F22m , m even. Then there for every (m − 1)�dimensional
subspace V in C it holds that |V⊥

⋂
C | = 1.



Proof of the last lemma
Consider

∑
v∈V

∑
x∈F χ(vx

3), and sum it in two ways.

q2 − 2q(
q

2
− 1) =

∑
v∈V

∑
x∈F

χ(vx3) =
q

2
(3|V⊥

⋂
C |+ 1)

|V⊥
⋂

C | = 1

Proof
Suppose there is a vector space W of dimension m in NBx3+Tr(x9).

• Tr(w) = 0 for every w ∈W . Then∑
x∈F χ(wx

3 + wTr(x9)) =
∑

x∈F χ(wx
3). Using Lemma

(Gölo§lu and Langevin), we can dismiss this option.

• Tr(w) = 0 for half of the elements of W . Let V = W
⋂
H0,

α ∈W : Tr(α) = 1. Then
∑

x∈F χ(wx
3 + wTr(x9)) =∑

x∈F χ(vx
3) +

∑
x∈F χ((v + α)x3 + x9).
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Proof (cont.)

∑
x∈F

χ((v + α)x3 + x9) =


0 (impossible (Bracken 2007))

−2q
+2q

.

Consider
∑

v∈V
∑

x∈F χ((v + α)x3 + x9).

4qM − q2 = 2qM − 2q(
q

2
−M) =

∑
v∈V

∑
x∈F

χ((v + α)x3 + x9) =

=
∑
x∈F

χ(x9 + αx3)
∑
v∈V

χ(vx3) =
q

2
± 3q

2

• 4qM − q2 = q
2 −

3q
2 = −q � cannot happen

• 4qM − q2 = q
2 + 3q

2 = 2q � also cannot happen
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Summary

• As of now, no known APN functions are CCZ�equivalent to a

permutation in F212

• We have a new EA�invariant for component�wise plateaued

functions.

• We proven CCZ�inequivalence of x3 + Tr(x9) to a

permutation in doubly even extensions.
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Thank you for your attention!


