Search for APN permutations among known APN functions

Jiří Pavlů

(joint work with Faruk Göloğlu)

Department of Algebra, Charles University in Prague

20 June 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(ロ)、(型)、(E)、(E)、 E) のQで

• APN functions - CCZ-equivalence to permutations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- APN functions CCZ-equivalence to permutations.
- We provide computational proof of CCZ-inequivalence to a permutations for functions from known families up to dimension $\mathbb{F}_{2^{12}}$ (with a single known exception).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- APN functions CCZ-equivalence to permutations.
- We provide computational proof of CCZ-inequivalence to a permutations for functions from known families up to dimension $\mathbb{F}_{2^{12}}$ (with a single known exception).
- We show a new EA invariant for component-wise plateaued functions.

ション ふゆ アメリア メリア しょうくの

- APN functions CCZ-equivalence to permutations.
- We provide computational proof of CCZ-inequivalence to a permutations for functions from known families up to dimension $\mathbb{F}_{2^{12}}$ (with a single known exception).
- We show a new EA invariant for component-wise plateaued functions.
- We provide a proof of CCZ-inequivalence of $x^3 + Tr(x^9)$ to a permutation in doubly even extensions.

ション ふゆ アメリア メリア しょうくの

Definition (APN function)

Let f be a function on \mathbb{F}_{2^n} , we say that f is almost perfect nonlinear function, if for all $a \in \mathbb{F}_{2^n}^*$ and all $b \in \mathbb{F}_{2^n}$ the equation

$$f(x) + f(x + a) = b$$

has always either 0 or 2 solutions:

Definition (Trace)

Let n > m, m|n. Then we call the function from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} such that:

$$\operatorname{tr}_m^n(\alpha) = \sum_{i=0}^{\frac{n}{m}-1} \alpha^{2^{mi}},$$

the *trace* function from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} .

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

Walsh transform Let f be a function on \mathbb{F}_{2^n} . We call a function

$$\hat{f}(u,v) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(vf(x)) + \operatorname{Tr}(ux)} = \sum_{x \in \mathbb{F}_{2^n}} \chi(vf(x) + ux)$$

the Walsh transform of f.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

Walsh transform Let f be a function on \mathbb{F}_{2^n} . We call a function

$$\hat{f}(u,v) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(vf(x)) + \operatorname{Tr}(ux)} = \sum_{x \in \mathbb{F}_{2^n}} \chi(vf(x) + ux)$$

the Walsh transform of f.

$$\mathbf{Z}_f = \{(u,v) \in \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} : \hat{f}(u,v) = 0\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Definition

Walsh transform Let f be a function on \mathbb{F}_{2^n} . We call a function

$$\hat{f}(u,v) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(vf(x)) + \operatorname{Tr}(ux)} = \sum_{x \in \mathbb{F}_{2^n}} \chi(vf(x) + ux)$$

the Walsh transform of f.

$$Z_{f} = \{(u, v) \in \mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}} : \hat{f}(u, v) = 0\}$$
$$NB_{f} = \{v \in \mathbb{F}_{2^{n}} : \hat{f}(0, v) \neq \pm 2^{n/2}\}$$

Notions of equivalence

ション ふゆ く 山 マ チャット しょうくしゃ

Definition (Extended Affine (EA) equivalence) Let f, g be functions on \mathbb{F}_{2^n} , we say that f is EA-equivalent to g if

$$g(x) = (L_1 \circ f \circ L_2)(x) + L_3(x)$$

for some L_1, L_2 affine permutations and L_3 affine function.

Definition (Carlet-Charpin-Zinoviev (CCZ) equivalence) Let f, g be functions on \mathbb{F}_{2^n} , we say that f is CCZ-equivalent to g if there exists an affine mapping M such that

$$\{(x, f(x)), x \in \mathbb{F}_{2^n}\} = M(\{(x, g(x)), x \in \mathbb{F}_{2^n}\}).$$

Current state of knowledge

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 We have one example of an APN permutation on 𝔽₂6. (K.A. Browning, J.F. Dillon, M.T. McQuistan and A.J. Wolfe, 2010)

Current state of knowledge

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- We have one example of an APN permutation on 𝔽₂6. (K.A. Browning, J.F. Dillon, M.T. McQuistan and A.J. Wolfe, 2010)
- We have computational proof, that up to dimension 10 there is no other APN permutation among known APN functions. (same paper)

Current state of knowledge

- We have one example of an APN permutation on 𝔽₂₆. (K.A. Browning, J.F. Dillon, M.T. McQuistan and A.J. Wolfe, 2010)
- We have computational proof, that up to dimension 10 there is no other APN permutation among known APN functions. (same paper)
- We know, that in dimension 4 there are none. (e.g. M. Calderini, M. Sala and I. Villa, 2015)

Table: Known infinite families of APN multinomial functions on $\mathbb{F}_{2^{2n}}$

#	Polynomial	Conditions		
1	$X^{2^{s}+1} + A^{2^{t}-1}X^{2^{it}+2^{n+s}}$	$n = 3t, \operatorname{gcd}(t, 3) = \operatorname{gcd}(s, 3t) = 1$ $t \ge 3, i \equiv st \pmod{3}, r = 3 - i,$ $A \in \mathbb{F} \text{ is primitive}$		
2	$X^{2^{s}+1} + A^{2^{s}-1}X^{2^{i_{t}}+2^{n+s}}$	$n = 4t, \operatorname{gcd}(t, 2) = \operatorname{gcd}(s, 2t) = 1$ $t \ge 3, i \equiv st \pmod{4}, r = 4 - i,$ $A \in \mathbb{F} \text{ is primitive}$		
3	$AX^{2^{s}+1} + A^{2^{m}}X^{2^{m+s}+2^{m}} + BX^{2^{m}+1} + \sum_{i=1}^{m-1} c_{i}X^{2^{m+i}+2^{i}}$	$n = 2m, m \text{ odd}, c_i \in \mathbb{F}_{2^m},$ $\gcd(s, m) = 1, s \text{ odd},$ $A, B \in \mathbb{F}$ is primitive		
4	$AX^{2^{n-t}+2^{t+s}} + A^{2^{t}}X^{2^{s}+1} + bX^{2^{t+s}+2^{s}}$	$n = 3t, \operatorname{gcd}(t, 3) = \operatorname{gcd}(s, 3t) = 1,$ $3 t + s, A \in \mathbb{F} \text{ is primitive, } b \in \mathbb{F}_{2^{t}}.$		
5	$A^{2^{t}}X^{2^{n-t}+2^{t+s}} + AX^{2^{s}+1} + bX^{2^{n-t}+1}$	n = 3t, $gcd(t, 3) = gcd(s, 3t) = 1$, $3 t + s, A \in \mathbb{F}$ is primitive, $b \in \mathbb{F}_{2^t}$		
6	$A^{2^{t}}X^{2^{n-t}+2^{t+s}} + AX^{2^{s}+1} + bX^{2^{n-t}+1} + cA^{2^{t}+1}X^{2^{t+s}+2^{s}}$	$n = 3t, \operatorname{gcd}(t, 3) = \operatorname{gcd}(s, 3t) = 1,$ $3 t + s, A \in \mathbb{F} \text{ is primitive,}$ $b, c \in \mathbb{F}_{2^{t}}, bc \neq 1$		
7	$X^{2^{2^{k}+2^{k}}} + BX^{q+1} + CX^{q(2^{2^{k}+2^{k}})}$	n = 2m, m odd, C is a $(q-1)$ st power but not a $(q-1)(2^i+1)$ st power, $CB^q \neq B$		
8	$X(X^{2^{k}} + X^{q} + CX^{2^{k}q}) + X^{2^{k}}(C^{q}X^{q} + AX^{2^{k}q}) + X^{(2^{k}+1)q}$	$n = 2m, \gcd(n, k) = 1,$ C satisfies $X^{2^{i}+1} + CX^{2^{i}} + C^{2^{n/2}}X + 1$ is irreducible, $A \in \mathbb{F} \setminus \mathbb{F}_{2m}$		
9	$X^3 + a^{-1} \operatorname{tr}_1^n(a^3 X^9)$			

Dillon's approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

A function f is CCZ-equivalent to a permutation if and only if there exist spaces U, V in $Z_f \bigcup \{(0,0)\}$, such that $U \bigcap V = \{(0,0)\}$ and dim(U) = dim(V) = n. Note that this is an if-and-only-if condition.

Our approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem

If a component-wise plateaued function f is CCZ-equivalent to a permutation, then there must exist subspaces U, V in NB_f such that $U^{\perp} \bigcap V^{\perp} = \{0\}$ (i.e. $U + V = \mathbb{F}$). In particular dim(U) + dim(V) $\geq n$.

Our approach

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem

If a component-wise plateaued function f is CCZ-equivalent to a permutation, then there must exist subspaces U, V in NB_f such that $U^{\perp} \bigcap V^{\perp} = \{0\}$ (i.e. $U + V = \mathbb{F}$). In particular dim(U) + dim(V) $\geq n$.

Corollary

If a component-wise plateaued function f is CCZ-equivalent to a function, then there must exist a subspace in NB_f of dimension n/2.

Note that none of these is an if-and-only-if condition.

Speed

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Standard approach basically searches Z_f ($|Z_f| \approx 2^{4m-2}$) for two trivially intersecting subspaces of dimension n.

Speed

(日) (伊) (日) (日) (日) (0) (0)

- Standard approach basically searches Z_f (|Z_f| ≈ 2^{4m-2}) for two trivially intersecting subspaces of dimension n.
- Our approach only requires searching for two trivially intersecting subspaces of dimension n/2 in NB_f. It is known, that for component-wise plateaued APN functions we have $|NB_f| < \sqrt{|Z_f|}$ therefore this approach is faster both practically and asymptotically.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (EA Invariant)

Let f and g be EA-equivalent, which are both plateaued. Let N_i and M_i denote the numbers of i-dimensional subspaces in NB_f and NB_g respectively. Then $N_i = M_i$ for every $i \in \mathbb{N}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (EA Invariant)

Let f and g be EA-equivalent, which are both plateaued. Let N_i and M_i denote the numbers of i-dimensional subspaces in NB_f and NB_g respectively. Then $N_i = M_i$ for every $i \in \mathbb{N}$.

As it is known, that for quadratic APN functions the EA and CCZ equivalence coincide (Yoshiara, 2011) it follows, that for these functions it is even a CCZ invariant.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.
Let
$$g = L_1(f(L_2(x))) + L_3(x)$$
.
 $\hat{g}(0, \alpha) = \sum_{x \in \mathbb{F}} \chi(\alpha g(x)) = \sum_{x \in \mathbb{F}} \chi(\alpha(L_1 \circ f \circ L_2(x)) + \alpha L_3(x))$

◆□ > < 個 > < E > < E > E 9 < 0</p>

Proof.
Let
$$g = L_1(f(L_2(x))) + L_3(x)$$
.
 $\hat{g}(0, \alpha) = \sum_{x \in \mathbb{F}} \chi(\alpha g(x)) = \sum_{x \in \mathbb{F}} \chi(\alpha(L_1 \circ f \circ L_2(x)) + \alpha L_3(x))$

Rewrite using L^* as the adjoint mapping to L, and $x = L_2^{-1}(y)$:

$$\sum_{x\in\mathbb{F}}\chi(f(y)L_1^*(\alpha)+y(L_3\circ L_2^{-1})^*(\alpha))=\hat{f}((L_3\circ L_2^{-1})^*(\alpha),L_1^*(\alpha)).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proof.
Let
$$g = L_1(f(L_2(x))) + L_3(x)$$
.
 $\hat{g}(0, \alpha) = \sum_{x \in \mathbb{F}} \chi(\alpha g(x)) = \sum_{x \in \mathbb{F}} \chi(\alpha(L_1 \circ f \circ L_2(x)) + \alpha L_3(x))$

Rewrite using L^* as the adjoint mapping to L, and $x = L_2^{-1}(y)$:

$$\sum_{x\in\mathbb{F}}\chi(f(y)L_1^*(\alpha)+y(L_3\circ L_2^{-1})^*(\alpha))=\hat{f}((L_3\circ L_2^{-1})^*(\alpha),L_1^*(\alpha)).$$

f and g are plateaued. Therefore supposing $\alpha \in NB_g$ $(\hat{g}(0, \alpha) \neq \pm 2^{n/2})$, we have that

$$\hat{f}((L_3 \circ L_2^{-1})^*(\alpha), L_1^*(\alpha)) \neq \pm 2^{n/2} \Leftrightarrow \hat{f}((0, L_1^*(\alpha)) \neq \pm 2^{n/2}.$$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Proof.
Let
$$g = L_1(f(L_2(x))) + L_3(x)$$
.
 $\hat{g}(0, \alpha) = \sum_{x \in \mathbb{F}} \chi(\alpha g(x)) = \sum_{x \in \mathbb{F}} \chi(\alpha(L_1 \circ f \circ L_2(x)) + \alpha L_3(x))$

Rewrite using L^* as the adjoint mapping to L, and $x = L_2^{-1}(y)$:

$$\sum_{x\in\mathbb{F}}\chi(f(y)L_1^*(\alpha)+y(L_3\circ L_2^{-1})^*(\alpha))=\hat{f}((L_3\circ L_2^{-1})^*(\alpha),L_1^*(\alpha)).$$

f and g are plateaued. Therefore supposing $\alpha \in NB_g$ $(\hat{g}(0, \alpha) \neq \pm 2^{n/2})$, we have that

$$\hat{f}((L_3 \circ L_2^{-1})^*(\alpha), L_1^*(\alpha)) \neq \pm 2^{n/2} \Leftrightarrow \hat{f}((0, L_1^*(\alpha)) \neq \pm 2^{n/2}.$$

Therefore every $U \subseteq \operatorname{NB}_g$ is mapped to $L_1^*(U) \subseteq \operatorname{NB}_f$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• For $\mathbb{F}_{2^{12}}$ all functions of all known (to authors) families were proven not to be CCZ-equivalent to a permutation.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- For $\mathbb{F}_{2^{12}}$ all functions of all known (to authors) families were proven not to be CCZ-equivalent to a permutation.
- Partial CCZ-inequivalence results were found for some function families.

#	<i>n</i> = 6	<i>n</i> = 8	<i>n</i> = 10	<i>n</i> = 12
1	-	-	-	4 (3)
2	-	-	-	4
3	2	-	4	-
4	3†	-	-	4 (3)
5	3†	-	-	4
6	3†	-	-	3
7	2	-	4	-
8	2	2	4	3
9	3°	3	5°°	4

Table: Calculated maximal dimensions of subspaces in NB_f

" $^{"}$ – in this family in this dimension there are functions which are equivalent to the Dillon's APN permutation.

"°" – is just x^3 which is not CCZ-equivalent to a permutation. "°" – only one subspace of the stated dimension $\neg_{\sigma} \mathbb{F}_{q}$. Table: Currently known results on CCZ-inequivalence to permutations for APN function classes

	n = 4k	n = 4k + 2	
Gold	\checkmark	\checkmark	F. Göloğlu and P. Langevin
Kasami	\checkmark	?	F. Göloğlu and P. Langevin
$x^3 + \operatorname{Tr}(x^9)$	\checkmark	?	here
Dobbertin	?	?	

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem Let $\mathbb{F} = \mathbb{F}_{q^2}$, $q = 2^m$, m even. Then $x^3 + Tr(x^9)$ is not CCZ-equivalent to a permutation on \mathbb{F} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For the proof we will require the following lemmata. From now on $C = \{a^3 : a \in \mathbb{F}^*\}.$ Lemma (Carlitz)

$$\sum_{x \in \mathbb{F}} \chi(ax^3) = \begin{cases} q^2 & \text{if } a = 0\\ (-1)^{m+1} 2q & \text{if } a \in C\\ (-1)^m q & \text{if } a \notin C \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For the proof we will require the following lemmata. From now on $C = \{a^3 : a \in \mathbb{F}^*\}.$ Lemma (Carlitz)

$$\sum_{x \in \mathbb{F}} \chi(ax^3) = \begin{cases} q^2 & \text{if } a = 0\\ (-1)^{m+1} 2q & \text{if } a \in C\\ (-1)^m q & \text{if } a \notin C \end{cases}$$

Lemma (Göloğlu and Langevin)

Let $\mathbb{F}_{2^{2m}}$, m even. Then there is no subspace in C of dimension m.

For the proof we will require the following lemmata. From now on $C = \{a^3 : a \in \mathbb{F}^*\}.$ Lemma (Carlitz)

$$\sum_{x \in \mathbb{F}} \chi(ax^3) = \begin{cases} q^2 & \text{if } a = 0\\ (-1)^{m+1} 2q & \text{if } a \in C\\ (-1)^m q & \text{if } a \notin C \end{cases}$$

Lemma (Göloğlu and Langevin)

Let $\mathbb{F}_{2^{2m}}$, m even. Then there is no subspace in C of dimension m.

Lemma

Let $\mathbb{F}_{2^{2m}}$, m even. Then there for every (m-1)-dimensional subspace V in C it holds that $|V^{\perp} \cap C| = 1$.

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

$$q^{2}-2q(\frac{q}{2}-1)=\sum_{v\in V}\sum_{x\in \mathbb{F}}\chi(vx^{3})=\frac{q}{2}(3|V^{\perp}\bigcap C|+1)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

$$q^{2} - 2q(\frac{q}{2} - 1) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^{3}) = \frac{q}{2}(3|V^{\perp} \bigcap C| + 1)$$

$$|V^{\perp} \bigcap C| = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

$$q^{2} - 2q(\frac{q}{2} - 1) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^{3}) = \frac{q}{2}(3|V^{\perp} \bigcap C| + 1)$$
$$|V^{\perp} \bigcap C| = 1$$

Suppose there is a vector space W of dimension m in $NB_{x^3+Tr(x^9)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

$$q^{2}-2q(\frac{q}{2}-1)=\sum_{v\in V}\sum_{x\in \mathbb{F}}\chi(vx^{3})=\frac{q}{2}(3|V^{\perp}\bigcap C|+1)$$

$$|V^{\perp} \bigcap C| = 1$$

Proof

Suppose there is a vector space W of dimension m in $NB_{x^3+Tr(x^9)}$.

•
$$\operatorname{Tr}(w) = 0$$
 for every $w \in W$. Then
 $\sum_{x \in \mathbb{F}} \chi(wx^3 + w\operatorname{Tr}(x^9)) = \sum_{x \in \mathbb{F}} \chi(wx^3)$. Using Lemma
(Göloğlu and Langevin), we can dismiss this option.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of the last lemma Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^3)$, and sum it in two ways.

$$q^{2} - 2q(\frac{q}{2} - 1) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi(vx^{3}) = \frac{q}{2}(3|V^{\perp} \bigcap C| + 1)$$

$$|V^{\perp} \bigcap C| = 1$$

Proof

Suppose there is a vector space W of dimension m in $NB_{x^3+Tr(x^9)}$.

•
$$\operatorname{Tr}(w) = 0$$
 for every $w \in W$. Then
 $\sum_{x \in \mathbb{F}} \chi(wx^3 + w\operatorname{Tr}(x^9)) = \sum_{x \in \mathbb{F}} \chi(wx^3)$. Using Lemma
(Göloğlu and Langevin), we can dismiss this option.

•
$$\operatorname{Tr}(w) = 0$$
 for half of the elements of W . Let $V = W \bigcap H_0$,
 $\alpha \in W : \operatorname{Tr}(\alpha) = 1$. Then $\sum_{x \in \mathbb{F}} \chi(wx^3 + w\operatorname{Tr}(x^9)) =$
 $\sum_{x \in \mathbb{F}} \chi(vx^3) + \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9)$.

$$\sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9) = \begin{cases} 0 \text{ (impossible (Bracken 2007))} \\ -2q \\ +2q \end{cases}$$

٠

$$\sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9) = \begin{cases} 0 \text{ (impossible (Bracken 2007))} \\ -2q \\ +2q \end{cases}$$

٠

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9)$.

$$\sum_{\mathbf{x}\in\mathbb{F}}\chi((\mathbf{v}+\alpha)\mathbf{x}^3+\mathbf{x}^9) = \begin{cases} 0 \text{ (impossible (Bracken 2007))} \\ -2q \\ +2q \end{cases}$$

٠

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9)$.

$$4qM - q^{2} = 2qM - 2q(\frac{q}{2} - M) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^{3} + x^{9}) =$$
$$= \sum_{x \in \mathbb{F}} \chi(x^{9} + \alpha x^{3}) \sum_{v \in V} \chi(vx^{3}) = \frac{q}{2} \pm \frac{3q}{2}$$

$$\sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9) = \begin{cases} 0 \text{ (impossible (Bracken 2007))} \\ -2q \\ +2q \end{cases}$$

Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9)$.

$$4qM - q^{2} = 2qM - 2q(\frac{q}{2} - M) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^{3} + x^{9}) =$$
$$= \sum_{x \in \mathbb{F}} \chi(x^{9} + \alpha x^{3}) \sum_{v \in V} \chi(vx^{3}) = \frac{q}{2} \pm \frac{3q}{2}$$

•
$$4qM-q^2=rac{q}{2}-rac{3q}{2}=-q$$
 - cannot happen

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

٠

$$\sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9) = \begin{cases} 0 \text{ (impossible (Bracken 2007))} \\ -2q \\ +2q \end{cases}$$

•

€ 900

< 미 > < 國 > < 필 > < 필 >

Consider $\sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^3 + x^9)$.

$$4qM - q^{2} = 2qM - 2q(\frac{q}{2} - M) = \sum_{v \in V} \sum_{x \in \mathbb{F}} \chi((v + \alpha)x^{3} + x^{9}) =$$
$$= \sum_{x \in \mathbb{F}} \chi(x^{9} + \alpha x^{3}) \sum_{v \in V} \chi(vx^{3}) = \frac{q}{2} \pm \frac{3q}{2}$$

Summary

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- As of now, no known APN functions are CCZ-equivalent to a permutation in $\mathbb{F}_{2^{12}}$

Summary

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- As of now, no known APN functions are CCZ-equivalent to a permutation in $\mathbb{F}_{2^{12}}$
- We have a new EA-invariant for component-wise plateaued functions.

Summary

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- As of now, no known APN functions are CCZ-equivalent to a permutation in $\mathbb{F}_{2^{12}}$
- We have a new EA-invariant for component-wise plateaued functions.
- We proven CCZ-inequivalence of $x^3 + Tr(x^9)$ to a permutation in doubly even extensions.

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?