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The Feedback Shift Registers - FSRs

I Let F2 be the binary field and Fn
2 the n-dimensional vector

space over F2. Let us consider a mapping

F : Fn
2 → Fn

2

F(x0, . . . , xn−1) = (x1, x2, . . . , xn−1, f (x0, . . . , xn−1)) (1)

where f is a Boolean function of n variables of the form

f (x0, . . . , xn−1) = x0 + F (x1, . . . , xn−1), (2)

and F is a Boolean function of n − 1 variables.
I The condition (2) defines a nonsingular FSR of order n.
I A nonsingular register decomposes the space Fn

2 into a finite
number of disjoint cycles.



de Bruijn Sequences

I If there is only one cycle (of length 2n), then we have a de
Bruijn sequence.

I The number of cyclically non-equivalent de Bruijn sequences
of order n is (published by de Bruijn, 1946)

Bn = 22
n−1−n (3)

I In fact, these sequences were discovered by Fench
mathematician C. Flye Sainte-Marie in 1984 and he proved
formula (3).

I Consider a de Bruijn sequence s = (s0, s1, . . .) with given
n-initial elements (s0, . . . , sn−1). The next elements, for i ­ 0,
are calculated from the formula

si+n = f (si , si+1, . . . , si+n−1) = si + F (si+1, . . . , si+n−1) (4)

for some Boolean function F .



Perturbation of Boolean Functions

I Let S(n) be the set of functions Fn−1
2 → F2, which generate

de Bruijn sequences of order n. For a function F : Fn−1
2 → F2,

we define the set S(F ; k) of functions g ∈ S(n) such that the
weight of the function F + g equals k. It means that the
number of inputs for which the functions F and g are
different equals k .

I We introduce the notation N(F ; k) = |S(F ; k)|
I and dwfine the counting function

G (F ; y) =
∑
k

N(F ; k)yk . (5)



The Counting Formula

I D. Coppersmith, R. C. Rhoades, J. M. Vanderkam. Counting
de Bruijn sequences as perturbations of linear recursions
(arXiv e-prints, May 2017) have proved the formula:

I Let ` be a linear function, then they have proved
Theorem

G (`; y) =
∑
k

N(`; k)yk = 2−n
∏

c∈C(`)

pd(c), (6)

where C (`) denotes the set of all cycles generated by the
feedback function `(x0, x1, . . . , xn−1), for any c ∈ C (`) let
d(c) be the number of ones in the cycle c and

pk(y) = (1 + y)k − (1− y)k for k > 0 and p0(y) = 1.



The proof of Coppersmith et al. formula (6)

I Let Gn be the de Bruijn graph of order n. It is a 2-in and
2-out directed graph with 2n vertices corresponding to
elements of Fn

2 and an edge

x0x1 . . . xn−1 −→ x1 . . . xn−1xn

for all choices of x0, x1, . . . xn−1, xn ∈ F2.
I Let F : Fn−1

2 → F2 be a Boolean function. In the graph Gn

label the edge x0x1 . . . xn−1 → x1 . . . xn−1xn by 1 if
xn = x0 + F (x1, . . . , xn−1) and by y otherwise. Denote the
weighted graph by Gn,F .

I Denote the weighted adjacency matrix by Wn,F . Hence Wn,F

is the 2n × 2n matrix with 1 in the row and column
corresponding to x0x1 . . . xn−1 → x1 . . . xn−1xn where
xn = x0 + F (x1, . . . , xn−1) and y otherwise.



The proof of Coppersmith et al. formula (6)

I If we view x0 . . . xn−1 as the binary representation of some
integer i then Wn,F (i , j) = 1 if and only if x1, . . . , xn1xn is the
binary representation of j , Wn,F (i , k) = y if and only if
x1, . . . , xn−1xn is the binary representation of k.

I Lemma
Let M be a p × p matrix such that the sum of the entries in
every row and column is 0. Let M0 be the matrix obtained
from M by removing the first row and first column. Then the
coefficient of z in the characteristic polynomial det(M − zI )
(with I the identity matrix) of M is equal to −p · det(M0).



The proof of Coppersmith et al. formula (6)

They have proven the following Proposition which is valid for
arbitrary Boolean function F : Fn−1

2 → F2, hence for any
non-singular FSR f = x0 + F

Proposition
(1 + y)2

n−1−1 · G (F ; y) is equal to the determinant of
(1 + y)In −Wn,F after deleting the first row and column.



The Fryers Formula
I Let a linear function ` : Fn−1

2 → F2 generate the m-sequence
of the period 2n − 1. Then the right side of (6) has the form

G (`; y) =
1
2n

(
(1 + y)2

n−1 − (1− y)2
n−1)

(7)

This formula was attributed to Michael Fryers.
I The coefficients N(`; k) can be calculated by expanding the

powers in G (`; y).

I The coefficients N(`, k) have the following interpretation.
I N(`; 1) = 1. Hence, from an m-sequence we get one de Bruijn

sequence by adding the cycle of the zero state, corresponding
to one change in the truth table of the function `.

I N(`; 2) = 0. The truth table of ` is changed in two places.
One change adds the zero cycle and the second cuts the full
cycle into two cycles. No new de Bruijn sequence obtained.

I In general, N(`; k) = 0 for all even k since an even number of
changes in the truth table of ` always lead to disjoint cycles.



The Fryers Formula - A Combinatorial View

I There is in fact an interesting combinatorial view on the
non-vanishing (> 0) coefficients of the polynomial G (`, y).

I Sequence A281123 in OEIS gives the formula for the positive
coefficients of the polynomial

G (`; y) = q(n − 1, y) =
(1 + y)2

n−1 − (1− y)2
n−1

2n
.

I Hence, for odd 1 ¬ k ¬ 2n−1 − 1, the formula for N(`, k) is

N(`, k) =
1

2n−1

(
2n−1

k

)
for n ­ 2. (8)

I More details and related integer sequences (such as Pascal
Triangle) can be found in https://oeis.org/A281123

https://oeis.org/A281123


The Fryers Formula - Corrolaries - 2

I The Helleseth and Kløve formula (1991) follows from (8)

N(`; 3) =
(2n−1 − 1)(2n−1 − 2)

3!

for the number of cross-join pairs for an m-sequence.
I The higher Helleseth and Kløve formula

N(`; k = 2j + 1 ­ 5) =
1
k!

k−1∏
i=1

(2n−1 − i)

gives the number of new de Bruijn sequences obtained after
the j-th application of cross-join method: (a) start from an
m-sequence, (b) add 0 to obtain a de Bruijn sequence, (c)
find all of its cross-join pairs, (d) use them to construct new
de Bruijn sequences, (e) for each resulting sequence, repeat
(c) and (d) j − 1 times.



The Fryers Formula - Corrolaries - 3

I Using (8) we easily obtain the number of all cyclically
non-equivalent de Bruijn sequences of order n:

G (`, 1) =
2n−1−1∑
k=1

N(`, k) =
1

2n−1

2n−1−1∑
k=1

(
2n−1

k

)
︸ ︷︷ ︸

:=α

= 22
n−1−n

(9)
since α = 22

n−1−1 is the sum of the odd entries in row 2n−1 of
the Pascal Triangle.

I For n = 4

7∑
k=1

N(`, k) = 1 + 7 + 7 + 1 = 24.



For n = 5 and n = 6

I For n = 5

15∑
k=1

N(`, k) = 1 + 35 + 273 + 715 + 715 + 273 + 35 + 1 = 211.

I For n = 6

31∑
k=1

N(`, k) = 1+ 155+ 6293+ 105183+ 876525+ 4032015

+ 10855425 + 17678835 + 17678835 + 10855425 + 4032015

+ 876525 + 105183 + 6293 + 155 + 1 = 67108864 = 226

I The coefficients are symmetric.



Starting from non-primitive linear recurrences

I Versions of Fryers’ formula (7) can be derived from
Coppersmith et al formula (6) for non-primitive linear
recurrences. We need to that the cyclic decomposition of the
generated sequence and the weights of cycles (the number of
ones on the cycles).

I Perturbation of linear recurrences for the order n = 4

Recurrence Fryers’ Polynomial # of de Bruijn Sequences

x0 + x1 y + 7y 3 + 7y 5 + y 7 (1, 7, 7, 1)

x0 + x3 y + 7y 3 + 7y 5 + y 7 (1, 7, 7, 1)

x0 12y 5 + 4y 7 (12, 4)

x0 + x2 8y 3 + 8y 5 (8, 8)

x0 + x1 + x2 6y 3 + 8y 5 + 2y 7 (6, 8, 2)

x0 + x1 + x3 12y 5 + 4y 7 (12, 4)

x0 + x2 + x3 6y 3 + 8y 5 + 2y 7 (6, 8, 2)

x0 + x1 + x2 + x3 8y 3 + 8y 5 (8, 8)



Starting from non-primitive linear recurrences

I Pure Circulating Register (PCR) l = x0 for the order n = 5
I The Freyers’ polynomial

576y7 + 960y9 + 448y11 + 64y13

I The sum of coefficients
576 + 960 + 448 + 64 = 2048 = 211

I 576 is the number of spanning trees for the adjacency graph
of PCR.

J. Mykkeltveit and J. Szmidt.
On cross joining de Bruijn sequences, Contemporary Mathematics,
vol. 632, pp. 333-344 (2015).
Theorem
Let (ut), (vt) be two de Bruijn sequences of order n. Then (vt)
can be obtained from (ut) by repeated applications of the
cross-join operation.



Starting from non-linear recurrences

I When we start from non-singular and non-linear recurrence we
can ganarate all de Bruijn sequences. First applying the
joining of cycles and then the cross-join method.

I We consider a situation when we start from modified de
Bruijn sequence (or corresponding non-linear recurrence).

I We first add the zero cycle which corresponds to term y in
the Fryers polynomial and then apply the cross-join method
until we generate all de Bruijn sequences.

I We have not a compact form of the right hand side of formula
(6) but we can calculate the Fryers calculate



Two Patterns for n = 4

Symmetric (1, 7, 7, 1) Asymmetric (1, 10, 5, 0)



First 30 of Exactly 60 Distribution Patterns for Order 5

Coefficients # Coefficients #

(1, 34, 276, 713, 713, 276, 34, 1) 192 (1, 34, 297, 804, 699, 202, 11, 0) 32

(1, 39, 310, 790, 677, 211, 20, 0) 112 (1, 40, 317, 768, 691, 216, 15, 0) 32

(1, 37, 322, 770, 685, 217, 16, 0) 96 (1, 35, 294, 806, 701, 199, 12, 0) 32

(1, 35, 273, 715, 715, 273, 35, 1) 96 (1, 32, 278, 717, 709, 274, 36, 1) 32

(1, 32, 237, 640, 739, 352, 47, 0) 80 (1, 36, 315, 792, 671, 212, 21, 0) 32

(1, 45, 351, 743, 639, 235, 33, 1) 64 (1, 34, 235, 636, 743, 354, 45, 0) 32

(1, 36, 270, 717, 717, 270, 36, 1) 64 (1, 31, 260, 726, 737, 267, 26, 0) 32

(1, 37, 274, 706, 717, 281, 32, 0) 64 (1, 32, 261, 720, 739, 272, 23, 0) 32

(1, 33, 235, 639, 743, 351, 45, 1) 64 (1, 33, 275, 719, 711, 271, 37, 1) 32

(1, 33, 262, 714, 741, 277, 20, 0) 64 (1, 37, 271, 711, 719, 275, 33, 1) 32

(1, 33, 278, 714, 709, 277, 36, 0) 64 (1, 39, 316, 774, 689, 211, 18, 0) 32

(1, 47, 349, 739, 643, 237, 31, 1) 48 (1, 48, 301, 672, 675, 304, 47, 0) 32

(1, 31, 237, 643, 739, 349, 47, 1) 48 (1, 49, 364, 834, 633, 157, 10, 0) 32

(1, 36, 274, 709, 717, 278, 32, 1) 32 (1, 47, 370, 830, 629, 163, 8, 0) 32

(1, 40, 341, 752, 659, 232, 23, 0) 32 (1, 47, 301, 675, 675, 301, 47, 1) 32



Last 30 of Exactly 60 Distribution Patterns for Order 5

Coefficients # Coefficients #

(1, 35, 276, 710, 713, 279, 34, 0) 32 (1, 41, 352, 858, 649, 141, 6, 0) 16

(1, 35, 318, 790, 669, 215, 20, 0) 24 (1, 45, 372, 834, 625, 161, 10, 0) 16

(1, 43, 374, 838, 621, 159, 12, 0) 24 (1, 43, 352, 846, 665, 135, 6, 0) 16

(1, 45, 366, 850, 613, 161, 12, 0) 16 (1, 41, 314, 770, 693, 213, 16, 0) 16

(1, 42, 315, 764, 695, 218, 13, 0) 16 (1, 38, 319, 772, 687, 214, 17, 0) 16

(1, 39, 352, 870, 633, 147, 6, 0) 16 (1, 41, 382, 826, 629, 157, 12, 0) 16

(1, 45, 344, 858, 657, 137, 6, 0) 16 (1, 48, 349, 736, 643, 240, 31, 0) 16

(1, 47, 346, 846, 661, 147, 0, 0) 16 (1, 32, 269, 704, 739, 288, 15, 0) 8

(1, 34, 267, 700, 743, 290, 13, 0) 16 (1, 47, 366, 838, 629, 155, 12, 0) 8

(1, 37, 306, 770, 717, 217, 0, 0) 16 (1, 36, 265, 696, 747, 292, 11, 0) 8

(1, 51, 362, 830, 637, 159, 8, 0) 16 (1, 39, 382, 838, 613, 163, 12, 0) 8

(1, 35, 324, 774, 681, 215, 18, 0) 16 (1, 39, 330, 878, 677, 123, 0, 0) 8

(1, 33, 296, 810, 697, 197, 14, 0) 16 (1, 60, 401, 776, 603, 188, 19, 0) 8

(1, 62, 399, 772, 607, 190, 17, 0) 16 (1, 31, 282, 814, 725, 195, 0, 0) 8

(1, 35, 304, 782, 713, 207, 6, 0) 16 (1, 64, 397, 768, 611, 192, 15, 0) 8



Patterns for n = 5

I For n = 5 there are exactly 60 perturbation patterns.
I The pattern in blue matches the Fryer’s coefficients. Note that

only 6 out of the 96 sequences correspond to the m-sequences.
I Other symmetric patterns are in bold.
I Each of the two pairs of patterns in red consists of reversals.
I Our investigation into various interesting patterns has only

just begun.
I There are many open questions and directions.



The weighted adjacency matrices, n = 3,
f = x0 + x2, Wf ,3

An example, n = 3 and F = x2, (The feedback function of the
register (1) is f = x0 + x2 ). Then the weighted matrix

Wn,F =



1 0 0 0 y 0 0 0
y 0 0 0 1 0 0 0
0 1 0 0 0 y 0 0
0 y 0 0 0 1 0 0
0 0 y 0 0 0 1 0
0 0 1 0 0 0 y 0
0 0 0 y 0 0 0 1
0 0 0 1 0 0 0 y





The weighted adjacency matrices, n = 3,
x0 + x2, (1 + y)I −WF ,n



y 0 0 0 −y 0 0 0
−y y + 1 0 0 −1 0 0 0
0 −1 y + 1 0 0 −y 0 0
0 −y 0 y + 1 0 −1 0 0
0 0 −y 0 y + 1 0 −1 0
0 0 −1 0 0 y + 1 −y 0
0 0 0 −y 0 0 y + 1 −1
0 0 0 −1 0 0 0 1


and the determinant from the Proposition: d3,F = y + y3

We call these determinants Fryers’ polynomials.
They describe the process of generating all de Bruijn sequences (or
all corresponding feedback functions) when starting from a
non-singular feedback shift register.



Spectral Theory of Graphs

I Charles Delorme and Jean-Pierre Tillich
The Spectrum of de Bruijn and Kautz Graphs
Europ. J. Combinatorics, 19(1998), pp. 307-319.

I They have given a complete description of the spectrum
of de Bruijn graph in terms of Tchebychev polynomials.

I We try to get similar results for weighted adjacency
matrices related to Feedback Shift Registers.

I The first step is to diagonalize the weighted adjacency
matrices.

I We have done a partial diagonalization.



n = 4
x0 + x1 the matrix (1/16) H W H , H−Hadamard matrix

The weighted adjacency matrix after partial diagonalization

y + 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 y + 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 y + 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 y + 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 y + 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 y + 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 y + 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 y + 1
0 0 0 0 0 0 0 0





n = 4 x0 + x1 the matrix (1/16) H W H

0 0 0 0 0 0 0 0
0 −y + 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−y + 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −y + 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −y + 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −y + 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −y + 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −y + 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −y + 1 0


y + 7y3 + 7y5 + y7



n = 4, x0 + x1 + x2 + x1x2, (1/8) H W H



2y + 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2y + 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 2y + 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2y + 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2y + 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2y + 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2y + 2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2y + 2
0 0 0 0 0 0 0 0





x0 + x1 + x2 + x1x2



0 0 0 0 0 0 0 0
y − 1 −y + 1 −y + 1 −y + 1 0 0 0 0

0 0 0 0 0 0 0 0
−y + 1 −y + 1 −y + 1 −y + 1 0 0 0 0

0 0 0 0 0 0 0 0
−y + 1 −y + 1 y − 1 −y + 1 0 0 0 0

0 0 0 0 0 0 0 0
−y + 1 −y + 1 −y + 1 y − 1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 y − 1 −y + 1 −y + 1 −y + 1
0 0 0 0 0 0 0 0
0 0 0 0 −y + 1 y − 1 −y + 1 −y + 1
0 0 0 0 0 0 0 0
0 0 0 0 −y + 1 −y + 1 y − 1 −y + 1
0 0 0 0 0 0 0 0
0 0 0 0 −y + 1 −y + 1 −y + 1 y − 1





THANK YOU !
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