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Boomerang attack

I introduced in 1999 by Wagner [1]
I ∼ extension of differential attack
I used when it is not possible to find a high-probability trail for

the entire cipher
I based on the idea of combining differential properties of

smallest parts of the cipher



Classical Boomerang attack: E = E1 ◦ E0

Pr [E0(x) + E0(x + α) = β] = p Pr [E1(x) + E1(x + γ) = δ] = q

Pr [E−1(E (x)⊕ δ)⊕ E−1(E (x ⊕ α)⊕ δ) = α] = p2 · q2 (1)

attack: distinguisher with a data complexity corresponding to
(pq)−2 adaptive chosen plaintexts/ciphertexts
(pointed out that independences assumption used in (1) may fail)



Sandwich attack: E = E1 ◦ Em ◦ E0
Em simple transformation (Sbox)

Pr [E−1m (Em(x)⊕ γ)⊕ E−1m (Em(x ⊕ β)⊕ γ) = β]
it plays a key role when estimating the complexity of boomerang
attacks and their generalizations



S−1(S(x)⊕ b)⊕ S−1(S(x ⊕ a)⊕ b) = a

Pr [S−1(S(x)⊕ b)⊕ S−1(S(x ⊕ a)⊕ b) = a]



S−1(S(x)⊕ b)⊕ S−1(S(x ⊕ a)⊕ b) = a

Pr [S−1(S(x)⊕ b)⊕ S−1(S(x ⊕ a)⊕ b) = a]



Difference Distribution Table DDT

DDT (a, b) = δS(a, b) = ]{x : S(x ⊕ a)⊕ S(x) = b}

Differential uniformity

δS = max
a 6=0

DDT (a, b)

Boomerang Connectivity Table BCT (introduced in [2])

BCT (a, b) = βS(a, b) = ]{x : S−1(S(x)⊕b)⊕S−1(S(x⊕a)⊕b) = a}

Boomerang uniformity

βS = max
a,b 6=0

BCT (a, b)



Known results on the BCT

[2] BCT (a, b) ≥ DDT (a, b),
[2] if δS = 2 then DDT (a, b) = BCT (a, b) for any a, b 6= 0,
[3] Boomerang uniformity is invariant under affine equivalence

and inverse, not by EA-eq. and CCZ-eq

[4] βF (a, b) = ]
{

(x , y) :
{
F (x + a) + F (y + a) = b
F (x) + F (y) = b

}
Remark: if (x0, y0) is a solution then also
(y0, x0), (x0 + a, y0 + a), (y0 + a, x0 + a) are distinct solutions
when x0 + a 6= y0,

[4] F (x) = xd then βF = maxb 6=0 βF (1, b)
[4] F quadratic permutation with δF = δ then δ ≤ βF ≤ δ(δ − 1)



4-uniform DDT Permutations over F2n

.

function expression conditions
Gold x2t +1 n = 2k, k odd, gcd(n, t)=2

Kasami x22t −2t +1 n = 2k, k odd, gcd(n, t)=2
Inverse x−1 n even

Bracken-Leander x22t +2t +1 n = 4t, t odd
Bracken-Tan-Tan αx2s +1 + α2k

x2−k +2k+s
some conditions.

.

[3] S the inverse mapping over F2n n even

βS =
{
4, if n ≡ 2 mod 4
6, if n ≡ 0 mod 4

[3] for n ≡ 2 mod 4, t even with gcd(t, n)=2, then for
S(x) = x2t+1 we have δS = 4, βS = 4

[5] for S the Bracken-Tan-Tan function βS = 4



Computational results in [4]
.

. Kasami:

Conditions F βF Conditions F βF
k = 3, t = 2 x13 4 k = 5, t = 6 x4033 44
k = 3, t = 4 x241 4 k = 7, t = 2 x13 24
k = 5, t = 2 x13 44 k = 7, t = 4 x241 16
k = 5, t = 4 x241 44 k = 7, t = 6 x4033 16.

.
Bracken-Leander: Conditions F βF Conditions F βF

k = 1 x7 4 k = 3 x73 14
.
.
[4] 4-uniform DDT permutations constructed from the inverse

F (x) =


1, if x = 0,
0, if x = 1,
x−1, otherwise

δF =
{
4, if n ≡ 2 mod 4
≤ 6, otherwise

then βF =


10, if n ≡ 0 mod 6,
8, if n ≡ 3 mod 6,
6, if n 6≡ 0 mod 3



On the Brecken-Leander function

Consider over F24k , with k odd and q = 2k , the map

F (x) = xq2+q+1.

(proven in [6] that F is a differentially 4-uniform permutation)
.
We have that

βF (1, b) ≤
{

12 if b ∈ Fq2

4 · r + 4 otherwise

where r is the number of roots not in Fq2 of

xq+1 (x2q + x)(x + 1)
(xq + x)2 = bq2 + b.



Computationally, we have that
I max r = 3 for k = 3, 5 (hence βF ≤ 16)
I max r = 5 for k = 7, 9, 11, 13, 15 (hence βF ≤ 24)

It is possible to verify theoretically that in general r ≤ 5.

Theorem
Over F24k with k odd, the differentially 4-uniform permutation
F (x) = xq2+q+1, where q = 2k , has boomerang uniformity at most
24.
computational results:

k = 3 βF = 14, k = 5 βF = 16,
k = 7 βF = 24, k = 9 βF = 24, k = 11 βF = 24
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On the inverse modified

Over F2n from a cycle π = (α0, . . . , αm), with α0, . . . , αm ∈ F2n , F
is defined as follow

F (x) = π(x)−1 =
{
α−1i+1 if x = αi
x−1 if x 6∈ {α0, . . . , αm}

In [7] there are several constructions of such functions that are
differentially 4-uniform.



Over F22k with c 6= 0, 1 such that Tr(c)=Tr(c−1)=1 we considered
the 4-DDT map from π = (1, c)

F (x) =


c−1 if x = 1
1 if x = c
x−1 otherwise

Theorem
Over F22k the differentially 4-uniform permutation π−1(x), with
π = (1, c) for c 6∈ F4 and Tr(c)=Tr(c−1)=1, is such that

βF =
{

10 if k ≡ 0(mod 2)
8 if k ≡ 1(mod 2)

For k odd and c2 = c + 1 we have βF = 6.
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βF =
{

10 if k ≡ 0(mod 2)
8 if k ≡ 1(mod 2)

For k odd and c2 = c + 1 we have βF = 6.



Over F22k with k odd c ∈ F4 \ F2 we considered the 4-DDT map
from π = (0, 1, c)

F (x) =


1 if x = 0
c + 1 if x = 1
0 if x = c
x−1 otherwise

Theorem
Over F22k , for k odd, the differentially 4-uniform permutation
π−1(x), with π = (0, 1, c) and c2 = c + 1, is such that

βF =
{

6 if k 6≡ 0(mod 3)
8 otherwise
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Over F22k with k odd c ∈ F4 \ F2 we considered the 4-DDT map
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