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Boomerang attack

introduced in 1999 by Wagner [1]
~ extension of differential attack

used when it is not possible to find a high-probability trail for
the entire cipher

based on the idea of combining differential properties of
smallest parts of the cipher



Classical Boomerang attack: E = E; o Ej

PrlEo(x) + Eo(x + ) = Bl = p  Pr[Ei(x) + Es(x +7) =d] =q
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PrIETYE(x)@8)® ETHE(x®a)®d) =a]l =p®- ¢ (1)

attack: distinguisher with a data complexity corresponding to
(pqg) 2 adaptive chosen plaintexts/ciphertexts
(pointed out that independences assumption used in (1) may fail)



Sandwich attack: E = E; 0 E,, 0 Eg

Ep, simple transformation (Sbox)

PriE, (Em(x) ©7) ® E, (Em(x @ B) @) = ]

it plays a key role when estimating the complexity of boomerang
attacks and their generalizations
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STHS(x)@b)®SHS(x®a)®b)=a
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STHS(x)@b)®SHS(x®a)®b)=a

PriSTH(S(x) @ b) ® ST (S(x @ a) @ b) = 4



Difference Distribution Table DDT
DDT (a, b) = ds(a, b) = t{x : S(x ® a) & S(x) = b}
Differential uniformity
0s = T;())( DDT (a, b)
Boomerang Connectivity Table BCT (introduced in [2])
BCT(a, b) = Bs(a, b) = t{x : STH(S(x)@b)BS H(S(x®a)Db) = a}
Boomerang uniformity

- BCT
Bs max CT(a, b)



Known results on the BCT

[2] BCT(a,b) > DDT(a, b),
[2] if 6s =2 then DDT(a,b) = BCT(a, b) for any a, b # 0,

[3] Boomerang uniformity is invariant under affine equivalence
and inverse, not by EA-eq. and CCZ-eq

[4] BF(a,b) = ﬁ{(x,y) : {,’::Ei)ial):z;)l:(_y; a)=b }

Remark: if (xo, y0) is a solution then also
(y0,%0), (x0 + a,y0 + a), (yo + a,x0 + a) are distinct solutions
when xg + a # yo,

[4-] F(X) = x9 then BF = maXp=£0 ,6/:(17 b)

[4] F quadratic permutation with §F = 0 then § < S < (6 — 1)



4-uniform DDT Permutations over [Fo»

function expression conditions
Gold X2 n = 2k, k odd, gecd(n, t)=2
Kasami X2 2H n =2k, k odd, ged(n, t)=2
Inverse x71 n even
Bracken-Leander x22t+2t+1 n=4t, t odd

Bracken-Tan-Tan

241y asz2*k+2k+5

some conditions

[3] S the inverse mapping over Fan n even

|

if n=2 mod4
if n=0 mod4

[3] for n =2 mod 4, t even with gcd(t, n)=2, then for
S(x) = x*+! we have ds = 4, 3s = 4
[5] for S the Bracken-Tan-Tan function s = 4



Computational results in [4]

Conditions F BrF | Conditions F BF
k=3t=2 x¥ 4 [k=5t=6 x"F 44
Kasami: k=3,t=4 x*' 4 |k=7,t=2 x¥ 24
k=51t=2 x¥ 44| k=7t=4 x* 16
k=51t=4 x* 44| k=7t=6 x* 16

Conditions F  Br | Conditions F  fBf
k=1 x4 k=3 x 14

Bracken-Leander:

[4] 4-uniform DDT permutations constructed from the inverse

1, if x=0, 4 if 2 mod 4
, if n=2mo
F(X): 07 if X:l, 5,:: .
1 i < 6, otherwise
X"+, otherwise

10, if n=0 mod 6,
then B = {8, if n=3mod 6,
6, if n#Z0mod3



On the Brecken-Leander function

Consider over F,u, with k odd and g = 2%, the map
F(x) = KPta+l
(proven in [6] that F is a differentially 4-uniform permutation)

We have that

12 if belFe
< q
Br(1,b) < { 4.r+4 otherwise

where r is the number of roots not in qu of

Ka+1 (x* +x)(x+1)

_ pq?
T+ )2 = b7 + b.




Computationally, we have that
» maxr =3 for k = 3,5 (hence B¢ < 16)
» maxr =05 for k =7,9,11,13,15 (hence ¢ < 24)
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It is possible to verify theoretically that in general r <'5.



Computationally, we have that
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» maxr =05 for k =7,9,11,13,15 (hence ¢ < 24)
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Theorem
Over Fyu with k odd, the differentially 4-uniform permutation

F(x) = x@+a+1 where q = 2%, has boomerang uniformity at most
24.



Computationally, we have that
» maxr =3 for k = 3,5 (hence B¢ < 16)
» maxr =05 for k =7,9,11,13,15 (hence ¢ < 24)
It is possible to verify theoretically that in general r <'5.
Theorem
Over Fyu with k odd, the differentially 4-uniform permutation

F(x) = x@+a+1 where q = 2%, has boomerang uniformity at most
24.

computational results:

k=3 Prp=14, k=5 J=16,
k=7 Pr=24, k=9 PBr=24, k=11 Br=24



On the inverse modified

Over Fn from a cycle m = (aw, ..., am), wWith ag, ..., am € Fon, F
is defined as follow

-1 .
. 1) o ifx=aq;
FO) =00 = { x1 ifxé{ag,...,am}

In [7] there are several constructions of such functions that are
differentially 4-uniform.



Over Faox with ¢ # 0,1 such that Tr(c)=Tr(c~1)=1 we considered
the 4-DDT map from m = (1, ¢)

cl ifx=1
F(x)=¢ 1 if x=c

x~1  otherwise



Over Faox with ¢ # 0,1 such that Tr(c)=Tr(c~1)=1 we considered
the 4-DDT map from m = (1, ¢)

cl ifx=1
F(x)=¢ 1 if x=c

x~1  otherwise

Theorem
Over Fyx the differentially 4-uniform permutation m—1(x), with
7 =(1,c) for c ¢ F4 and Tr(c)=Tr(c')=1, is such that

B = 10 if k =0(mod 2)
F=1 8 ifk=1(mod?2)

For k odd and c® = ¢ + 1 we have Br = 6.



Over Fyox with k odd ¢ € F4 \ F2 we considered the 4-DDT map
from 7 = (0,1, ¢)

1 if x=0
c+1 ifx=1
F(x) 0 if x=c¢

X otherwise



Over Fyox with k odd ¢ € F4 \ F2 we considered the 4-DDT map
from 7 = (0,1, ¢)

1 if x=0

c+1 ifx=1
F(x) 0 if x=c¢

x~1  otherwise

Theorem
Over Fyx, for k odd, the differentially 4-uniform permutation
7Y (x), with m = (0,1,¢) and c® = c + 1, is such that

{ 6 if k % 0(mod 3)
BF =

8 otherwise



Over Fyox with k odd ¢ € F4 \ F2 we considered the 4-DDT map

from 7w = (1,c,c+1)

c+1

if x=1
if x=c
if x=c+1

otherwise



Over Fyox with k odd ¢ € F4 \ F2 we considered the 4-DDT map

from 7w = (1,c,c+1)

c+1

Theorem

if x=1
if x=c
ifx=c+1
otherwise

Over Fyx, for k odd, the differentially 4-uniform permutation
77 Y(x), with m = (1,¢,c + 1) and c®> = c + 1, is such that

Bp = <6 ifk# 0(mod 3)
F=3 s otherwise
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