On the Boomerang Uniformity of some Permutation Polynomials

Marco Calderini and Irene Villa

University of Bergen (Norway) - Selmer center

BFA 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Boomerang attack

- ▶ introduced in 1999 by Wagner [1]
- \blacktriangleright ~ extension of differential attack
- used when it is not possible to find a high-probability trail for the entire cipher

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

based on the idea of combining differential properties of smallest parts of the cipher Classical Boomerang attack: $E = E_1 \circ E_0$

 $Pr[E_0(x) + E_0(x + \alpha) = \beta] = p$ $Pr[E_1(x) + E_1(x + \gamma) = \delta] = q$

$$Pr[E^{-1}(E(x)\oplus\delta)\oplus E^{-1}(E(x\oplus\alpha)\oplus\delta)=\alpha]=p^2\cdot q^2 \qquad (1)$$

attack: distinguisher with a data complexity corresponding to $(pq)^{-2}$ adaptive chosen plaintexts/ciphertexts (pointed out that independences assumption used in (1) may fail)

Sandwich attack: $E = E_1 \circ E_m \circ E_0$

 E_m simple transformation (Sbox)

 $\Pr[E_m^{-1}(E_m(x)\oplus\gamma)\oplus E_m^{-1}(E_m(x\oplus\beta)\oplus\gamma)=\beta]$

it plays a key role when estimating the complexity of boomerang attacks and their generalizations

 $S^{-1}(S(x) \oplus b) \oplus S^{-1}(S(x \oplus a) \oplus b) = a$

æ

 $S^{-1}(S(x) \oplus b) \oplus S^{-1}(S(x \oplus a) \oplus b) = a$

Difference Distribution Table DDT

$$DDT(a,b) = \delta_S(a,b) = \sharp\{x : S(x \oplus a) \oplus S(x) = b\}$$

Differential uniformity

$$\delta_{\mathcal{S}} = \max_{a \neq 0} DDT(a, b)$$

Boomerang Connectivity Table BCT (introduced in [2])

$$BCT(a,b) = \beta_{\mathcal{S}}(a,b) = \sharp\{x: S^{-1}(\mathcal{S}(x) \oplus b) \oplus S^{-1}(\mathcal{S}(x \oplus a) \oplus b) = a\}$$

Boomerang uniformity

$$\beta_{S} = \max_{a,b \neq 0} BCT(a,b)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Known results on the BCT

$$[2] BCT(a,b) \geq DDT(a,b),$$

[2] if $\delta_S = 2$ then DDT(a, b) = BCT(a, b) for any $a, b \neq 0$,

[3] Boomerang uniformity is invariant under affine equivalence and inverse, not by EA-eq. and CCZ-eq

[4]
$$\beta_F(a,b) = \# \{ (x,y) : \begin{cases} F(x+a) + F(y+a) = b \\ F(x) + F(y) = b \end{cases} \}$$

Remark: if (x_0, y_0) is a solution then also $(y_0, x_0), (x_0 + a, y_0 + a), (y_0 + a, x_0 + a)$ are distinct solutions when $x_0 + a \neq y_0$,

[4]
$$F(x) = x^d$$
 then $\beta_F = \max_{b \neq 0} \beta_F(1, b)$

[4] *F* quadratic permutation with $\delta_F = \delta$ then $\delta \leq \beta_F \leq \delta(\delta - 1)$

4-uniform DDT Permutations over \mathbb{F}_{2^n}

function	expression	conditions		
Gold	$x^{2^{t}+1}$	n = 2k, k odd, gcd(n, t) = 2		
Kasami	$x^{2^{2t}-2^t+1}$	n = 2k, k odd, gcd $(n, t) = 2$		
Inverse	x^{-1}	<i>n</i> even		
Bracken-Leander	$x^{2^{2t}+2^t+1}$	n = 4t, t odd		
Bracken-Tan-Tan	$\alpha x^{2^{s}+1} + \alpha^{2^{k}} x^{2^{-k}+2^{k+s}}$	some conditions		

Computational results in [4]

	Condit	ons	F	β_F	Сог	nditions	F	β_F
Kasami:	k = 3, t	= 2	x ¹³	4	<i>k</i> =	5, <i>t</i> = 6	x ⁴⁰³³	44
	k = 3, t	= 4	x^{241}	4	<i>k</i> =	7, t = 2	x^{13}	24
	k = 5, t	= 2	x^{13}	44	<i>k</i> =	7, t = 4	x^{241}	16
	k = 5, t	= 4	x^{241}	44	<i>k</i> =	7, t = 6	x ⁴⁰³³	16
Bracken-Leander:		Cond	litions	F	$\beta_{\rm F}$	Conditio	ons F	β_F
		k	_ 1	v ⁷	Λ	k = 3	×	⁷³ 1/

[4] 4-uniform DDT permutations constructed from the inverse $F(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{if } x = 1, \\ x^{-1}, & \text{otherwise} \end{cases} \quad \delta_F = \begin{cases} 4, & \text{if } n \equiv 2 \mod 4 \\ \leq 6, & \text{otherwise} \end{cases}$ $\text{then } \beta_F = \begin{cases} 10, & \text{if } n \equiv 0 \mod 6, \\ 8, & \text{if } n \equiv 3 \mod 6, \\ 6, & \text{if } n \not\equiv 0 \mod 3 \end{cases}$

On the Brecken-Leander function

Consider over $\mathbb{F}_{2^{4k}}$, with k odd and $q = 2^k$, the map

$$F(x) = x^{q^2 + q + 1}.$$

(proven in [6] that F is a differentially 4-uniform permutation)

We have that

$$eta_{ extsf{F}}(1,b) \leq \left\{egin{array}{cc} 12 & extsf{if} \ b \in \mathbb{F}_{q^2} \ 4 \cdot r + 4 & extsf{otherwise} \end{array}
ight.$$

where *r* is the number of roots not in \mathbb{F}_{q^2} of

$$x^{q+1} \frac{(x^{2q} + x)(x+1)}{(x^q + x)^2} = b^{q^2} + b.$$

• max
$$r = 3$$
 for $k = 3, 5$ (hence $\beta_F \leq 16$)

• max r = 5 for k = 7, 9, 11, 13, 15 (hence $\beta_F \le 24$)

• max
$$r = 3$$
 for $k = 3, 5$ (hence $\beta_F \leq 16$)

• max r = 5 for k = 7, 9, 11, 13, 15 (hence $\beta_F \le 24$)

It is possible to verify theoretically that in general $r \leq 5$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• max r = 3 for k = 3, 5 (hence $\beta_F \leq 16$)

• max r = 5 for k = 7, 9, 11, 13, 15 (hence $\beta_F \le 24$)

It is possible to verify theoretically that in general $r \leq 5$.

Theorem

Over $\mathbb{F}_{2^{4k}}$ with k odd, the differentially 4-uniform permutation $F(x) = x^{q^2+q+1}$, where $q = 2^k$, has boomerang uniformity at most 24.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• max r = 3 for k = 3, 5 (hence $\beta_F \leq 16$)

• max r = 5 for k = 7, 9, 11, 13, 15 (hence $\beta_F \le 24$)

It is possible to verify theoretically that in general $r \leq 5$.

Theorem

Over $\mathbb{F}_{2^{4k}}$ with k odd, the differentially 4-uniform permutation $F(x) = x^{q^2+q+1}$, where $q = 2^k$, has boomerang uniformity at most 24.

computational results:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the inverse modified

Over \mathbb{F}_{2^n} from a cycle $\pi = (\alpha_0, \ldots, \alpha_m)$, with $\alpha_0, \ldots, \alpha_m \in \mathbb{F}_{2^n}$, F is defined as follow

$$F(x) = \pi(x)^{-1} = \begin{cases} \alpha_{i+1}^{-1} & \text{if } x = \alpha_i \\ x^{-1} & \text{if } x \notin \{\alpha_0, \dots, \alpha_m\} \end{cases}$$

In [7] there are several constructions of such functions that are differentially 4-uniform.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Over $\mathbb{F}_{2^{2k}}$ with $c \neq 0, 1$ such that $\text{Tr}(c)=\text{Tr}(c^{-1})=1$ we considered the 4-DDT map from $\pi = (1, c)$

$$F(x) = \begin{cases} c^{-1} & \text{if } x = 1\\ 1 & \text{if } x = c\\ x^{-1} & \text{otherwise} \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Over $\mathbb{F}_{2^{2k}}$ with $c \neq 0, 1$ such that $Tr(c)=Tr(c^{-1})=1$ we considered the 4-DDT map from $\pi = (1, c)$

$$F(x) = \begin{cases} c^{-1} & \text{if } x = 1\\ 1 & \text{if } x = c\\ x^{-1} & \text{otherwise} \end{cases}$$

Theorem

Over $\mathbb{F}_{2^{2k}}$ the differentially 4-uniform permutation $\pi^{-1}(x)$, with $\pi = (1, c)$ for $c \notin \mathbb{F}_4$ and $Tr(c)=Tr(c^{-1})=1$, is such that

$$\beta_F = \begin{cases} 10 & \text{if } k \equiv 0 \pmod{2} \\ 8 & \text{if } k \equiv 1 \pmod{2} \end{cases}$$

For k odd and $c^2 = c + 1$ we have $\beta_F = 6$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Over $\mathbb{F}_{2^{2k}}$ with k odd $c \in \mathbb{F}_4 \setminus \mathbb{F}_2$ we considered the 4-DDT map from $\pi = (0, 1, c)$

$$F(x) = \begin{cases} 1 & \text{if } x = 0\\ c+1 & \text{if } x = 1\\ 0 & \text{if } x = c\\ x^{-1} & \text{otherwise} \end{cases}$$

Over $\mathbb{F}_{2^{2k}}$ with k odd $c \in \mathbb{F}_4 \setminus \mathbb{F}_2$ we considered the 4-DDT map from $\pi = (0, 1, c)$

$$F(x) = \begin{cases} 1 & \text{if } x = 0\\ c+1 & \text{if } x = 1\\ 0 & \text{if } x = c\\ x^{-1} & \text{otherwise} \end{cases}$$

Theorem

Over $\mathbb{F}_{2^{2k}}$, for k odd, the differentially 4-uniform permutation $\pi^{-1}(x)$, with $\pi = (0, 1, c)$ and $c^2 = c + 1$, is such that

$$\beta_{\mathsf{F}} = \begin{cases} 6 & \text{if } k \not\equiv 0 \pmod{3} \\ 8 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Over $\mathbb{F}_{2^{2k}}$ with k odd $c \in \mathbb{F}_4 \setminus \mathbb{F}_2$ we considered the 4-DDT map from $\pi = (1, c, c+1)$

$$F(x) = \begin{cases} c+1 & \text{if } x = 1\\ c & \text{if } x = c\\ 1 & \text{if } x = c+1\\ x^{-1} & \text{otherwise} \end{cases}$$

Over $\mathbb{F}_{2^{2k}}$ with k odd $c \in \mathbb{F}_4 \setminus \mathbb{F}_2$ we considered the 4-DDT map from $\pi = (1, c, c+1)$

$$F(x) = \begin{cases} c+1 & \text{if } x = 1 \\ c & \text{if } x = c \\ 1 & \text{if } x = c+1 \\ x^{-1} & \text{otherwise} \end{cases}$$

Theorem

Over $\mathbb{F}_{2^{2k}}$, for k odd, the differentially 4-uniform permutation $\pi^{-1}(x)$, with $\pi = (1, c, c + 1)$ and $c^2 = c + 1$, is such that

$$eta_{\mathsf{F}} = \left\{ egin{array}{cc} \leq 6 & \textit{if } k
ot= 0 (mod \ 3) \ 8 & \textit{otherwise} \end{array}
ight.$$

List of references:

[1] D. Wagner. The boomerang attack. In Lars R. Knudsen, editor, *FSE'99*, volume 1636 of *LNCS*, pg 156-170. Springer, Heidelberg, 1999.

[2] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, L. Song. Boomerang connectivity table: a new cryptanalysis tool. In Jesper Buus Nielsen and Vincent Rijmen, ediotrs, *Advances in Cryptology - EUROCRYPT 2018*, pg 683-714, Cham, Springer International Publishing, 2018.

[3] C. Boura, A. Canteaut. On the boomerang uniformity of cryptographic sboxes. *IACR Transactions on Symmetric Cryptology*, 2018(3), pg 290-310, 2018.

[4] K. Li, L. Qu, B. Sun, C. Li. New results about the boomerang uniformity of permutation polynomials. Cryptology ePrint Archive, Report 2019/079, 2019.

[5] S. Mesnager, C. Tang, M. Xiong. On the boomerang uniformity of quadratic permutations over \mathbb{F}_{2^n} . Cryptology ePrint Archive, Report 2019/277, 2019.

[6] C. Bracken, G. Leander. A Highly Nonlinear Differentially 4 Uniform Power Mapping That Permutes Fields of Even Degree. Finite Fields and Their Applications 16 pg 231-242, 2009

[7] Y. Li, M. Wang, Y. Yu. Constructing differentially 4-uniform permutations over $GF(2^{2k})$ from the inverse function revisited. Cryptology ePrint Archive, Report 2013/731, 2013.