Relation between o-equivalence and EA-equivalence for Niho bent functions

Diana Davidova University of Bergen

join work with Lilya Budaghyan, Claude Carlet, Tor Helleseth, Ferdinand Ihringer, Tim Penttila

> BFA–2019 Florence, Italy June 16 - 21, 2019

	1000			10	
					20
-		_			

18 June 2019 1 / 20

< □ > < 同 > < 回 > < 回 >

 \mathbb{F}_{2^n} is a field with 2^n elements, $\mathbb{F}_{2^n}^* = \mathbb{F}_{2^n} \setminus \{0\}$.

Trace function

A mapping $Tr_r^k : \mathbb{F}_{2^k} \mapsto \mathbb{F}_{2^r}$, defined in the following way:

$$Tr_k^r(x) = \sum_{i=0}^{\frac{k}{r}-1} x^{2^{ii}}$$

for any $k, r \in \mathbb{Z}^+$, such that k is dividing by r. For r = 1, Tr_1^k is called the absolute trace:

$$Tr_1^k(x) = Tr_k(x) = \sum_{i=0}^{k-1} x^{2^i}.$$

Diana Davidova

Notation and preliminaries

Boolean function $f : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2$.

• Walsh transformation

is a Fourier transformation of $\chi_f = (-1)^f$, whose value is defined by:

$$\widehat{\chi_f}(w) = \Sigma_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + Tr_n(wx)},$$

at point $w \in \mathbb{F}_{2^n}$.

• The Hamming distance

 $f,g: \mathbb{F}_{2^n} \mapsto \mathbb{F}_2, \ d_H(f,g) = |\{x \in \mathbb{F}_{2^n} | f(x) \neq g(x)\}|.$

• Nonlinearity

 $\begin{aligned} \mathcal{NL}(f) &= \min_{l \in An} d_H(f, l), \text{ where} \\ A_n &= \{ l : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2 | l = \mathit{Tr}_n(ax) + b, a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_2 \}. \end{aligned}$

High nonlinearity prevents cryptosystem from linear attacks and correlation attacks.

(日) (四) (注) (注) (正)

Bent functions

$$\mathcal{NL}(f) = 2^{n-1} - \frac{1}{2} \max_{\mathbf{a} \in F_{2^n}} \widehat{\chi_f}(\mathbf{a}).$$
$$\mathcal{NL}(f) \le 2^{n-1} - 2^{\frac{n}{2}-1}.$$

The $\mathcal{NL}(f)$ reach the upper bound only for even *n*.

Bent function

A boolean function $f : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2$ (*n* is even), if $\mathcal{NL}(f) = 2^{n-1} - 2^{\frac{n}{2}-1}$, equivalently if $\widehat{\chi_f}(w) = \pm 2^{\frac{n}{2}}$ for any $w \in \mathbb{F}_{2^n}$.

 Boolean functions f and g are called EA-equivalent, if there exist an affine authomorphism A and an affine Boolean function / s.t. f = g o A + l.

イロト 不得 トイヨト イヨト

A positive integer d (understood modulo 2ⁿ − 1 with n = 2m) is a Niho exponent and t → t^d, is a Niho power function, if the restriction of t^d to F_{2^m} is linear, i.e. d ≡ 2^j(mod 2^m − 1) for some j < n.

Example

Niho bent functions

- Quadratic functions $Tr_m(at^{2^m+1}), a \in \mathbb{F}_{2^m}^*$;
- Binomilas of the form $f(t) = Tr_n(\alpha_1 t_1^{d_1} + \alpha_2 t_2^{d_2})$, where $\alpha_1, \alpha_2 \in F_{2^n}$, $d_1 = (2^m 1)\frac{1}{2} + 1$, and d_2 can be: $(2^m 1)3 + 1, (2^m 1)\frac{1}{4} + 1 \text{ (}m \text{ is odd)}, (2^m 1)\frac{1}{6} + 1(m \text{ is even}).$

• For
$$r > 1$$
 with $gcd(r, m) = 1$
 $f(x) = Tr_n \left(a^2 t^{2^m + 1} + (a + a^{2^m}) \sum_{i=1}^{2^{r-1} - 1} t^{d_i} \right)$,
where $2^r d_i = (2^m - 1)i + 2^r$, $a \in \mathbb{F}_{2^n}$ s.t. $a + a^{2^m} \neq 0$.

Niho bent functions in the univariant representation are functions in the following class \mathcal{H} :

$$g(x,y) = \begin{cases} Tr_m\left(xG\left(\frac{y}{x}\right)\right), \text{ if } x \neq 0;\\ Tr_m(\mu y), \text{ if } x = 0, \end{cases}$$

where $\mu \in \mathbb{F}_{2^m}$, $G : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^m}$ satisfying the following conditions:

$$F: z \mapsto G(z) + \mu z$$
 is a permutation over \mathbb{F}_{2^m} (1)

$$z \mapsto F(z) + \beta z$$
 is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m}^*$. (2)

Condition (2) implies condition (1) and it necessary and sufficient for g being bent. Functions in \mathcal{H} and a class of functions introduced by Dillon in 1974 are the same up to addition a linear term.

¹C. Carlet, S.Mesnager "On Dillons class H of bent functions, Niho bent functions and o-polynomials", J.Combin.Theory Ser. A, vol. 118, no. 8, pp.2392-2410, 2010. • • • • •

Diana Davidova

o-polynomials

A polynomial $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^m}$ is called an o-polynomial, if

• F is a permutational polynomial satisfies F(0) = 0, F(1) = 1;

$$\text{ o the function } F_s(x) = \begin{cases} 0, & \text{if } x = 0, \\ \frac{F(x+s) + F(s)}{x} & \text{if } x \neq 0 \end{cases}$$

$$\text{ is a permutation for each } s \in \mathbb{F}_{2^m}^*.$$

Theorem

A polynomial F defined on F_{2^m} such that F(0) = 0, F(1) = 1 is an o-polynomial, iff

$$z \mapsto F(z) + \beta z$$
 is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m}^*$.

Every o-polynomial defines a Niho bent function and vice versa.

Let F be an o-polynomial defined on \mathbb{F}_{2^m} . Then o-polynomial $G = A_1 \circ F \circ A_2$ defines Niho bent function EA-equivalent to F, if

•
$$A_1(x) = \frac{1}{F(b)}x, A_2(x) = bx;$$

2 $A_1(x)$ is an automorphism over \mathbb{F}_{2^m} and $A_2 = A_1^{-1}$,

◎
$$A_1(x) = x + a$$
 and $A_2(x) = x + b$ for $a, b \in \mathbb{F}_{2^m}$, $b = F(a)$ and $F(a+1) + F(a) = 1$.

Note that from 1. easily follows that every o-polynomial on \mathbb{F}_{2^m} defines a vectorial Niho bent function $xF(\frac{y}{x})$ from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{F}_{2^m} .²

²S. Mesnager. Bent vectorial functions and linear codes from o-polynomials. *Journal Designs, Codes and Cryptography*. 77(1), pages 99-116, 2015

The list of known o-polynomials

•
$$F(x) = x^{2^{i}}, gcd(i, m) = 1,$$

• $F(x) = x^{6}, m \text{ is odd},$
• $F(x) = x^{3 \cdot 2^{k} + 4}, m = 2k - 1,$
• $F(x) = x^{2^{k} + 2^{2k}}, m = 4k - 1,$
• $F(x) = x^{2^{k} + 2^{2k+1}}, m = 4k + 1,$
• $F(x) = x^{2^{k}} + x^{2^{k} + 2} + x^{3 \cdot 2^{k} + 4}, m = 2k - 1,$
• $F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}, m \text{ is odd}.$
• $F(x) = \frac{1}{Tr_{m}^{n}}(v) \Big(Tr_{m}^{n}(v^{r})(x+1) + (x + Tr_{m}^{n}(v)x^{\frac{1}{2}} + 1)^{1-r} Tr_{m}^{n}(vx + v^{2^{m}})^{r} \Big) + x^{\frac{1}{2}},$
where *m* is even, $r = \pm \frac{2^{m-1}}{3}, v \in \mathbb{F}_{2^{2m}}, v^{2^{m+1}} \neq 1, v \neq 1,$
• $F(x) = x^{4} + x^{16} + x^{28} + \omega^{11}(x^{6} + x^{10} + x^{14} + x^{18} + x^{22} + x^{26}) + \omega^{20}(x^{8} + x^{20}) + \omega^{6}(x^{12} + x^{24})$ with $\omega^{5} = \omega^{2} + 1.$

・ロト ・回ト ・ヨト ・ヨト

Niho bent functions are **o-equivalent** if the corresponding o-polynomials are equivalent.

o-equivalent Niho bent functions defined by o-polynomials ${\sf F}$ and ${\sf F}^{-1}$ can be EA-inequivalent .

< □ > < □ > < □ > < □ > < □ >

$$\begin{split} \mathcal{F} \text{ is the collection of all o-polynomials defined on } \mathbb{F}_{2^m} \text{ and} \\ < H > = < \{ \tilde{\sigma_a}, \tilde{\tau_c}, \varphi, \rho_{2^j} | 0 \leq j \leq m-1, c \in \mathbb{F}_{2^m}, a \in \mathbb{F}_{2^m}^* \} > \text{ is a group of} \\ \text{transformations acting on } \mathcal{F} \text{ as follow} \\ \tilde{\sigma_a} F(x) &= \frac{1}{F(a)} F(ax), \ a \in \mathbb{F}_{2^m}^*; \\ \tilde{\tau_c} F(x) &= \frac{1}{F(1+c) + F(c)} (F(x+c) + F(c)) = \alpha_F^c(F(x+c) + F(c)), \ c \in \mathbb{F}_{2^m}, \\ \varphi F(x) &= F'(x) = xF(x^{-1}); \\ \rho_{2^j} F(x) &= F^{2^j}(x^{2^{-j}}), \ 0 \leq j \leq m-1. \end{split}$$

Proposition

Two o-polynomials are equivalent if and only if they lie on the same orbit of the action of the group generated by H and the inverse map.

Theorem

Let F be an o-polynomial. Then an o-polynomial \overline{F} obtained from F using one transformation from H and the inverse map can produce a Niho bent function EA-inequivalent to those defined by F and F^{-1} only if $\overline{F} = (F')^{-1}$.

General transformation

Let *i* be a positive integer and $k_i \ge 0$. Denote by H_i a composition of length k_i of generators φ and $\tilde{\tau}_c$ as follows:

$$H_{i} = \underbrace{\varphi \circ \tilde{\tau}_{c_{i_{1}}} \circ \varphi \circ \tilde{\tau}_{c_{i_{2}}} \circ \dots}_{k_{i}}$$
(1)

where $c_{i_i} \in \mathbb{F}_{2^m}$.

Theorem

Let F be an o-polynomial, g_F the corresponding Niho bent function and G_F the class of all functions o-equivalent to g_F . Then o-polynomials of the form

$$(H_1(H_2(H_3(\dots(H_qF)^{-1}\dots)^{-1})^{-1})^{-1})^{-1},$$
(2)

• • • • • • • • • • •

where H_i is defined by (1), for all $i \in \{1 \dots q\}$, $q \ge 1$, and $k_i \ge 1$ for $i \ge 3$, $k_i \ge 0$ for $i \le 2$, provide representatives for all EA-equivalence classes within G_F . That is, up to EA-equivalence, all Niho bent functions o-equivalent to g_F arise from (2).

Some particular cases of formula (2)

• For
$$q = 1$$
 and $k_1 = 2$:
 $F_c^{\circ}(x) = (\varphi \circ \tau_c F)^{-1}(x) = \left(\alpha_F^c x \left(F\left(\frac{1}{x} + c\right) + F(c)\right)\right)^{-1}, \quad c \in \mathbb{F}_{2^m}.$
For $c = 0$ $F_c^{\circ} = (F')^{-1}.$
 F_c° defines a sequence of Niho bent functions $g_{F_c^{\circ}}$ potentially EA-inequivalent to each other for different c , and EA-inequivalent to Niho bent functions defined by F , F^{-1} .

• For
$$q = 1$$
 and $k_1 = 3$:
 $(F_c^*)^{-1} = (\varphi \circ \tau_c \circ \varphi F)^{-1}(x) = \left(\alpha_{F'}^c \left((1 + cx)F\left(\frac{x}{1+cx}\right) + cxF\left(\frac{1}{c}\right)\right)\right)^{-1},$
 $c \in \mathbb{F}_{2^m}.$
For $c = 0$, $(F_c^*)^{-1} = F^{-1}.$
Niho bent functions $g_{(F_c^*)^{-1}}$ can potentially be EA-inequivalent to each othe
for different c and EA-inequivalent to Niho bent functions defined by F, F_c°

メロト メタト メヨト メヨト

Lemma

For an o-monomial $F(x) = x^d$, the Niho bent functions defined by F_c° and F_1° are EA-equivalent, for any $c \in \mathbb{F}_{2^m}^*$.

Lemma

For an o-monomial $F(x) = x^d$, the Niho bent functions defined by $(F_c^*)^{-1}$, $(F^*)_1^{-1}$ and F_1° are EA-equivalent, for $c \in \mathbb{F}_{2^m}^*$.

< □ > < 同 > < 回 > < 回 >

Lemma

Let F be an o-monomial. Then for
$$q \ge 3$$

 $(H_1(H_2(\dots(H_qF)^{-1}\dots)^{-1})^{-1} = \begin{cases} \beta \tau_1 G^{-1}; \\ \gamma(\varphi \circ \tau_1 G)^{-1}; \\ \eta \varphi \circ \tau_1 G, \end{cases}$
where $G \in \{F, (\varphi F)^{-1}, \varphi F^{-1}, F^{-1}, (\varphi F^{-1})^{-1}, \varphi F\}, \beta, \gamma, \eta \in \mathbb{F}_{2^m}^* \text{ and } H_i \text{ are defined by (1) for all } i$.

Proposition

For each o-monomials o-equivalence can give at most 4 EA-inequivalent functions. For an o-monomial F the 4 potentially EA-inequivalent bent functions are defined by F, F^{-1} , $(F')^{-1}$ and F_1° .

< □ > < □ > < □ > < □ > < □ >

Proposition

For Frobenius map o-equivalence gives exactly 3 EA-inequivalent functions corresponding to F, F^{-1} , $(F')^{-1}$.

メロト メタト メヨト メヨト

$$F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}$$

Proposition

For o-polynomial $F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}$ o-equivalence can give EA-inequivalent Niho bent functions corresponding to o-polynomials F and F_c° , $c \in \mathbb{F}_{2^m}^*$.

Example

For m = 5 we checked computationally that the o-polynomial $F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}$ over \mathbb{F}_{2^m} defines 6 EA-inequivalent Niho bent functions corresponding to o-polynomials F, $F^{-1} = F_0^{\circ}$ and F_w° , $F_{w^3}^{\circ}$, $F_{w^5}^{\circ}$, where w is a primitive element of \mathbb{F}_{2^m} .

Example

 $F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}$ gives $\frac{3m+2^{m-1}-1}{m}$ EA-inequivalent Niho bent functions over the field $F_{2^{2m}}$ with prime m. For m = 7 (12), m = 11 (96), m = 13 (318), m = 17 (3858) and so on.

For Subiaco, Adelaide and $x^{2^k} + x^{2^k+2} + x^{3 \cdot 2^k+4}$ o-polinomials F o-equivalence can give a sequence of EA-inequivalent functions defined by o-polynomials on the orbits F, F^{-1} , F_c° , $(\tilde{\tau}_{c_1}F)_{c_2}^{\circ}$, $(\tilde{\tau}_{c_1}(F'))_{c_2}^{\circ}$ and so on.

Example

From o-polynomial $x^{2^k} + x^{2^k+2} + x^{3 \cdot 2^k+4}$ we obtain $\frac{4m+2^m-2}{m}$ EA-inequivalent Niho bent functions over the field $F_{2^{2m}}$ with prime m. For m = 7 (22) m = 11 (190), m = 13 (634), m = 17 (7714) and so on.

Thank You!

Diana Davidova

(≧) ≧ ∽ () 18 June 2019 20 / 20

メロト メタト メヨト メヨト