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Introduction

Let G1 and G2 be two finite Abelian groups of the same cardinality and
f : G1 → G2. We focus on the study of the differential map

∆f ,a(x) = f (x + a)− f (x).

Given a 6= 0 ∈ G1 and b ∈ G2, what is the number of solutions of

f (x + a)− f (x) = b?

The differential map notion is related to several important problems
including Costas array (for radar and sonar communications) and
perfect non-linear (PN) almost perfect non-linear (APN) functions
(for cryptography).
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Costas arrays as a difference map

A Costas array of order n is an n × n array of dots and blanks which
satisfies

n dots, n(n− 1) blanks, with exactly one dot in each row and column;
and

all segments between pairs of dots are different.

A Costas array can be represented by

f (1) f (2) · · · f (n)

such that f (j) = i if (i , j)-position has a dot, and for x 6= y , a 6= 0

f (x + a)− f (x) 6= f (y + a)− f (y).
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PN and APN functions

Definition

Let G1 and G2 be finite Abelian groups of the same cardinality and
f : G1 → G2. Then f is a perfect non-linear (PN) function if

∆f ,a(x) = f (x + a)− f (x) = b

has exactly one solution for all a 6= 0 ∈ G1 and all b ∈ G2.

Perfect non-linear permutations do not exist. Furthermore, perfect
non-linear functions cannot exist in finite fields of characteristic 2 (the
most important for implementations). An alternate definition for the
best-possible differential structure of a function is APN.
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APN functions

Definition

Let G1 and G2 be finite Abelian groups of the same cardinality and
f : G1 → G2. Then, f is an almost perfect non-linear (APN) function if

∆f ,a(x) = f (x + a)− f (x) = b

has at most two solutions for all a 6= 0 ∈ G1 and all b ∈ G2.

Example. The inverse function f : x 7→ x2n−2 in F2n is APN if and only if n
is odd. This function is used in AES but n = 8!

Theorem. Let f (x) = x2n−2 over F2n . The function f is APN if and only if
n is odd. Furthermore, if n is even, then ∆f ,a is differential 4-uniform, and
is optimally so (for monomials).
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Differential spectrum

Let G1 and G2 be finite Abelian groups of the same cardinality and
f : G1 → G2. For any a ∈ G ∗1 and b ∈ G2, we consider

∆f ,a(x) = f (x + a)− f (x) = b

and denote λa,b(f ) = #∆−1
f ,a(b). Over finite fields, for 0 ≤ i ≤ q, let

ni (f ) = #{(a, b) ∈ G ∗1 × G2 | λa,b(f ) = i}.

The differential spectrum of a function f is the vector [n0(f ), . . . , nq(f )].

Providing differential spectrum of a function leads to important differential
knowledge on the function. As an example, the differential spectra of
monomial functions f (x) = x2t−1 ∈ F2n [x ], 1 < t < n, is considered by
Blondeau, Canteaut and Charpin (IEEE-IT, 2011).
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Ambiguity and deficiency

Panario, Sakzad, Stevens and Wang (IEEE-IT, 2011) attempt to
understand the injectivity and surjectivity of ∆f ,a when f is a bijection.
How close a bijection f is to be APN?

Again, for any a ∈ G ∗1 and b ∈ G2, we consider

∆f ,a(x) = f (x + a)− f (x) = b

and denote λa,b(f ) = #∆−1
f ,a(b). Over finite fields, for 0 ≤ i ≤ q, let

ni (f ) = #{(a, b) ∈ G ∗1 × G2 | λa,b(f ) = i}.

The deficiency of f , denoted by D(f ), is n0. Hence, D(f ) measures the
number of pairs (a, b) such that ∆f ,a(x) = b has no solutions.

This is a measure of the surjectivity of ∆f ,a: the lower the deficiency the
closer the ∆f ,a are to surjective.
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Ambiguity and deficiency (cont.)

Moreover, we define the (weighted) ambiguity of f as

A(f ) =
∑

0≤i≤q
ni (f )

(
i

2

)
.

The weighted ambiguity of f measures the total replication of pairs of x
and x ′ such that ∆f ,a(x) = ∆f ,a(x ′) for some a ∈ G ∗1 .

This is a measure of the injectivity of the function ∆f ,a: the lower the
ambiguity of f the closer the ∆f ,a are to injective.

Remark. Deficiency does not require knowledge of the full differential
spectrum, but computing the exact ambiguity of a function does require
this information. Tight upper and lower bounds for deficiency and
ambiguity are given both in general for finite Abelian groups, and in
particular for bijections in finite fields, not requiring spectrum knowledge.
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Related measures: dispersion

The dispersion of a permutation P on the set {0, 1, . . . , p − 1} is the
cardinality of the set

{(j − i ,P(j)− P(i)) : 0 ≤ i < j ≤ p − 1}.

Dispersion has been used as a random measure for interleavers in turbo
codes; see the book by Heegard and Wicker, 1999.

Dispersion is related to deficiency but deficiency is invariant under
extended affine equivalence and dispersion is not; see Çeşmelioğlu, Meidl
and Topuzoğlu (Journal of Computational and Applied Mathematics,
2014).

In that paper dispersion is used to provide permutations of given Carlitz
rank with prescribed cycle decomposition and dispersion.
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Related measures: non-balancedness

Let G1 and G2 be finite Abelian groups and f : G1 → G2. The mean of the
(uniform) random variable |f −1(b)| is |G1|/|G2|; then f is balanced if the
random variable is constant. The coalescence, that is the variance of this
random variable giving the distribution of the preimage sizes, is

1

|G2|
∑
b∈G2

(
|f −1(b)| − |G1|

|G2|

)2

.

The non-balancedness of f is defined as

NB(f ) =
∑
a∈G∗1

∑
b∈G2

(
|∆−1

f ,a(b)| − |G1|
|G2|

)2

.

Non-balancedness is related to ambiguity; see Carlet and Ding (Finite
Fields and their Applications, 2007). Non-balancedness is used to provide
bounds on the non-linearity of the function.
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Let us remember the title of this talk:

Ambiguity, deficiency and differential spectrum of
normalized permutation polynomials over finite fields

We still need to define

normalized permutation polynomials over finite fields.

Daniel Panario Ambiguity, deficiency and spectrum of PPs 11 / 27



Normalized permutation polynomials

Let Fq be the finite field of q elements, q a prime power. If f : Fq → Fq

induces a bijection, f is a permutation polynomial; if f is monic, f (0) = 0,
and, when the degree n of f is not divisible by the characteristic of Fq, the
coefficient of xn−1 is zero, then f is in normalized form. Normalized
permutation polynomials are known exhaustively up to degree six.

A list of all normalized permutation polynomials of degree less than six,
taken from Chapter 7 of Lidl and Niederreiter (1983), is given next. The
characterization of all normalized permutation polynomials of degree six is
more recent (Shallue and Wanless, 2013).

The main results of this work are in the coming tables that provide exact
formulas for the differential spectrum, deficiency and ambiguity of all
normalized permutation polynomials of degree up to six over finite fields.
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# Normalized PP in Fq q Differential Spectrum (Deficiency = n0) Ambiguity

1) x2, q ≡ 0 (mod 2) - [(q − 1)2, 0, · · · , 0, q − 1] (q − 1)
(
q
2

)
2) x3, q 6≡ 1 (mod 3)

a) q ≡ 0 (mod 3): - [(q − 1)2, 0, · · · , 0, q − 1] (q − 1)
(
q
2

)
b) q = 2m , m odd: -

[
(q − 1) q

2
, 0, (q − 1) q

2
, 0, · · · , 0

]
(q − 1) q

2

c) q ≡ 2 (mod 3), q odd: -

[
(q−1)2

2
, q − 1,

(q−1)2

2
, 0, · · · , 0

]
(q−1)2

2

3) x3 − wx -
[

(q − 1)2, 0, · · · , 0, q − 1
]

(q − 1)
(
q
2

)
q ≡ 0 (mod 3), w is NS

4) x4 ± 3x , q = 7 - [12, 18, 12, 0, · · · , 0] 12

5) x4 + a1x2 + a2x -
[

(q − 1)2, 0, · · · , 0, q − 1
]

(q − 1)
(
q
2

)
q ≡ 0 (mod 2),
only root in Fq is 0

6) x5, q 6≡ 1 (mod 5)

a) q = 2m , m even: -
[

(q − 1) 3q
4
, 0, 0, 0, (q − 1) q

4
, 0, · · · , 0

]
(q − 1) q

4

(
4
2

)
b) q = 2m , m odd: -

[
(q − 1) q

2
, 0, (q − 1) q

2
, 0, · · · , 0

]
(q − 1) q

2

c) q ≡ 0 (mod 5): -
[

(q − 1)2, 0, · · · , 0, q − 1
]

(q − 1)
(
q
2

)
d) q 6≡ 0, 1 (mod 5), q odd: 1

[
5(q−1)2

8
, 0,

(q−1)(q+3)
4

, q−1,
(q−1)(q−9)

8
, 0, · · · , 0

]
(q − 1)(q − 3)

3
[

(q−1)(5q+1)
8

, 0,
(q−1)(q−3)

4
, q−1,

(q−1)(q−3)
8

, 0, · · · , 0
]

(q − 1)q

5
[

(q−1)(5q−9)
8

, q−1,
(q−1)(q+3)

4
, 0,

(q−1)(q−5)
8

, 0, · · · , 0
]

(q − 1)(q − 3)

7
[

(q−1)(5q−3)
8

, q−1,
(q−1)(q−3)

4
, 0,

(q−1)(q+1)
8

, 0, · · · , 0
]

(q − 1)q

Table: Differential spectrum, deficiency and ambiguity of degree up to 5
normalized permutation polynomials (q = q mod 8).
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# Normalized PP in Fq q Differential Spectrum (Deficiency = n0) Ambiguity

7) x5 − wx -
[

(q − 1)2, 0, · · · , 0, q − 1
]

(q − 1)
(
q
2

)
q ≡ 0 (mod 5)

w not a 4th power

8) x5 + wx - [40, 0, 24, 8, 0, · · · , 0] 48

q = 9, w2 = 2

9) x5 ± 2x2 , q = 7 - [12, 24, 0, 6, 0, · · · , 0] 18

10) x5 + wx3 ± x2 + 3w2x - [14, 18, 8, 0, 2, 0, · · · , 0] 20
q = 7, w is NS

12) x5 + wx3 + 3w2x - [90, 6, 42, 6, 12, 0, · · · , 0] 132
q = 13, w is NS

13) x5 − 2wx3 + w2x
q ≡ 0 (mod 5), w is NS

-

[
(q−1)2

2
, q − 1,

(q−1)2

2
, 0, · · · , 0

]
(q−1)2

2

Table: Differential spectrum, deficiency and ambiguity of degree up to 5
normalized permutation polynomials (q = q mod 8).

χ(B)
χ(A)

+1 0 −1

+1 −2 q−1 0
0 q−1 0 −(q−1)
−1 0 −(q−1) 2

Table: Values of SA,B .
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# Normalized PP in Fq q Differential Spectrum (Deficiency = n0) Ambiguity

11) x5 + wx3 + 5−1w2x S is in previous table
w ∈ Fq , q ≡ ±2
(mod 5)

a) q= 2m , m odd:
-

w = 0:
[

(q − 1) q
2
, 0, (q − 1) q

2
, 0, · · · , 0

]
(q − 1) q

2

-
w 6= 0:

[
(q − 1) q

2
+

(q−2)q
8

, 0, q2

4
, 0,

(q−2)q
8

, 0, · · · , 0

]
(2q − 3) q

2

b) q odd, − 6w
5

is 0 or NS: 1

[
5(q−1)2

8
, q−1

2
− S

2
,

(q−1)(q+1)
4

+ S
2
, (q − 1)(q − 2)− S

q−1
2

+ S
2
,

(q−1)(q−5)
8

− S
2
, 0, · · · , 0

]
3

[
(q−1)(5q−3)

8
− S

2
, q−1

2
+ S

2
,

(q−1)(q−1)
4

+ S
2
, (q − 1)2 − S

q−1
2
− S

2
,

(q−1)(q−3)
8

, 0, · · · , 0
]

5

[
5(q−1)2

8
+ S

2
, q−1

2
− S

2
,

(q−1)(q+1)
4

− S
2
, (q − 1)(q − 2) + S

q−1
2

+ S
2
,

(q−1)(q−5)
8

, 0, · · · , 0
]

7
[

(5q−3)(q−1)
8

, q−1
2

+ S
2
,

(q−1)(q−1)
4

− S
2
, (q − 1)2 + S

q−1
2
− S

2
,

(q−1)(q−3)
8

+ S
2
, 0, · · · , 0

]
c) q odd,− 6w

5
6= 0 is SQ: 1

[
(q−1)(5q−3)

8
, q+1

2
− S

2
,

(q−3)(q+1)
4

+ S
2
, (q − 3)(q − 2)+

q−3
2

+ S
2
,

(q−3)(q−5)
8

+ q−1
2
− S

2
, 0, · · · , 0

]
3(q − 1)− S

3
[

(q−3)(5q−3)
8

+ (q − 1)− S
2
, q+1

2
+ S

2
,

(q−1)(q+1)
4

+ S
2
, (q − 1)(q − 2)− S

q−3
2
− S

2
,

(q−3)2

8
, 0, · · · , 0

]
5

[
(q−1)(5q−3)

8
+ S

2
, q+1

2
− S

2
,

(q−3)(q+1)
4

− S
2

, (q − 3)(q − 2)+

q−3
2

+ S
2
,

(q−3)(q−5)
8

+ q−1
2
, 0, · · · , 0

]
3(q − 1) + S

7
[

(q−3)(5q−3)
8

+ (q − 1), q+1
2

+ S
2
,

(q−1)(q+1)
4

− S
2
, (q − 1)(q − 2) + S

q−3
2
− S

2
,

(q−3)2

8
+ S

2
, 0, · · · , 0

]
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# Normalized PP in Fq Differential Spectrum (Deficiency = n0) Ambiguity

1) x6 ± 2x , q = 11 [40, 50, 0, 20, 0, · · · , 0] 60

2) x6 + u2vx3 + ux2 + 5vx [52, 26, 22, 4, 2, 4, 0, · · · , 0] 86
q = 11, u 6= 0 is SQ, v ∈ {±1}

3) x6 + 4u2vx3 + ux2 + 4vx u = 0 : [40, 50, 0, 20, 0, · · · , 0] 60
q = 11, u = 0 or NS, v ∈ {±1} u is NS: [46, 32, 20, 10, 2, 0, · · · , 0] 62

4) x6 +u2x4 +u7vx3 +u4x2 +u(2v +1)x ,
q = 9, u 6= 0

[52, 0, 0, 18, 0, 0, 0, 0, 0, 2] 126

v a root of x6 − x4 + x3 + x2 + x

5) x6+ux5+2uvx4+(u3+uv2+2v3)x3+

(2u4 + uv3)x2 + (2u5 + u4v + 2uv4)x
[28, 22, 18, 2, 2, 0, · · · , 0] 36

q = 9, u 6= 0, v arbitrary

6) x6 + ux5 + 2uvx4 + (uv2 + 2v3 +

u3w)x3 + (uv3 + 2u4w)x2 + (u5w2 +

2uv4 + u4vw)x , q = 9, u 6= 0,

w ∈ {z, 2z + 1} : [22, 30, 18, 2, 0, · · · , 0] 24

v arbitrary, w a root of x4 + 1 w ∈ {2z, z + 2} : [28, 22, 18, 2, 2, 0, · · · , 0] 36

7) x6 + ux5 + 2uvx4 + (2u3 + uv2 +

2v3)x3 +(u4 +uv3)x2 +(2u5 +u5w +

2u4v + 2uv4)x , q = 9, u 6= 0,

[22, 42, 0, 2, 6, 0, · · · , 0 42

v arbitrary, w a root of x2 + 1

8) x6 + ux5 + 2uvx4 + (uv2 + 2v3)x3 +

(2u4 + uv3)x2 + (u4v + 2uv4)x
[256, 252, 156, 14, 24, 0, · · · , 0] 342

q = 27, u 6= 0, v arbitrary

9) x6 + u2x4 + u4x2
[

(q − 1) q
2
, 0, (q − 1) q

2
, 0, · · · , 0

]
(q − 1) q

2
q = 2m , m odd, m ≥ 3, u arbitrary

Table: Differential spectrum, deficiency and ambiguity of degree 6 normalized
permutation polynomials (q = q mod 8 and, in line 6, z is a root of
z2 + 2z + 2 = 0).

Daniel Panario Ambiguity, deficiency and spectrum of PPs 16 / 27



# Normalized PP in Fq Differential Spectrum (Deficiency = n0) Ambiguity

10) x6 + u5v2x4 + u4x3 + (u3 + u3v +

u3v4)x2 + u2v2x
[34, 0, 16, 0, 6, 0, 0, 0, 0] 52

q = 8, u 6= 0, v arbitrary

11) x6 + ux5 + u2(v2 + v)x4 + u3x3 +

u4(v2 + w)x2 + u5(v + w)x , q = 8,

[43, 0, 0, 0, 12, 0, 0, 0, 1] 100

u 6= 0, v a root of x4 + x2 + x ,

w a root of x4 + x3 + x2 + 1

12) x6 + ux5 + u2(v2 + v)x4 + u3wx3 +

u4(v4 + vw)x2 + u5(v4 + v2w)x
[28, 0, 28, 0, · · · , 0] 28

q = 8, u 6= 0, v arbitrary,

w a root of x3 + x + 1

13) x6 + ux5 + u2(v2 + v + 1)x4 + u3x3 +

u4(v2 + 1)x2 + u5vx
[43, 0, 0, 0, 12, 0, 0, 0, 1] 100

q = 8, u 6= 0, v arbitrary

14) x6 +ux5 +u2(v2 +v+1)x4 +u3w3x3 +

u4(v4 +vw3 +w4)x2 +u5(v4 +v2w3 +

w3 + w4)x , q = 8, u 6= 0,

[34, 0, 16, 0, 6, 0, 0, 0, 0] 52

v arbitrary, w a root of x4 + x2 + x

15) x6 + ux5 + u2(v6 + v5 + w4 + w2 +

w)x4 + u3x3 + u4(v6 + v5 + w4 +

w2)x2 + u5(v + w)x , q = 16, u 6= 0,

[183, 0, 0, 0, 56, 0, · · · , 0, 1] 456

v a root of x7 + x4 + x3 + x2 + x ,

w a root of x8 + x4 + x2 + x + 1

16) x6 + ux5 + u2(v2 + v)x4 + u4(v4 +

1)x2 + u5v4x , q = 32, u 6= 0, v arbit.

[616, 0, 256, 0, 120, 0, · · · , 0] 976

Table: Differential spectrum, deficiency and ambiguity of degree 6 normalized
permutation polynomials (q = q mod 8).
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The interesting cases

For some functions the results are easy to derive. This happens when q is
a constant. Also, for example, if q ≡ 0 (mod 5), the polynomial x5 is
linearized and we immediately obtain its ambiguity and deficiency as
A = (q − 1)

(q
2

)
and D = (q − 1)2 from previous works.

The cases in lines 6 and 11 of Table 1, corresponding, respectively, to the
polynomials x5 for q 6≡ 1 (mod 5), and x5 + wx3 + 5−1w2x for arbitrary
w and q ≡ 2, 3 (mod 5), are more involved; we study the latter in detail
and derive the former as a consequence.

To obtain our results in these harder cases we need to find solutions of
quartic equations over finite fields. We use quadratic residuocity and
Jacobi-like character sums for that task.
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Sketch of the proof

The values of ambiguity and deficiency for a given field size q depend
uniquely on the values of the spectrum vector ni for i , in principle, ranging
from i = 0, . . . , q.

The vector ni summarizes the distribution of values of the difference table:
ni counts how many times the value “i” occurs in the table of λa,b(f ).

Equivalently, each value λa,b shows, for a fixed a ∈ F∗q, how many times
(that is, for how many x ’s) a given b ∈ Fq is produced by the function
∆f ,a(x) = f (x + a)− f (x). As a consequence, for
Fw (x) = x5 + wx3 + 5−1w2x ∈ Fq[x ], q odd, q ≡ ±2 (mod 5), the ni ’s
depend on the number of solutions, in the field Fq, to the quartic equation

5ax4 + 10a2x3 + (3aw + 10a3)x2 + (3a2w + 5a4)x +
aw2

5
+ a3w + a5 = b.
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Sketch of the proof (cont)

5ax4 + 10a2x3 + (3aw + 10a3)x2 + (3a2w + 5a4)x +
aw2

5
+ a3w + a5 = b.

(1)
This equation can have a maximum of 4 roots, for all a ∈ F∗q and for all
b ∈ Fq (that is, 0 ≤ i ≤ 4).

In summary, the search for a formula to compute spectrum vector,
ambiguity and deficiency for x5 + wx3 + 5−1w2x over a given finite field of
size q implies in the characterization, in Fq, of the roots of Eq. (1).

Since a ∈ F∗q, a−1, a−2 and a−5 always exist and we can have the

following changes of variables: y = x
a , v = w

a2 and c = b
a5 , obtaining

5y4 + 10y3 + (3v + 10)y2 + (3v + 5)y +
v2

5
+ v + 1 = c . (2)
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Sketch of the proof (cont)

In Eq. (2), while b runs through all values in Fq, so does c . Since we are
only interested in the number of solutions of this equation, and not in the
specific roots themselves, it does not matter whether we get x or x/a.
Thus, for each v , the characterization of the roots of Eq. (1) can be done,
without loss of generality, with the value of a fixed as 1. Hence, the
equation to be analyzed can be simplified to ∆Fv ,1(x) = b, or

x4 + 2x3 +

(
3v + 10

5

)
x2 +

(
5 + 3v

5

)
x +

1

5

(
1 +

v2

5
+ v

)
=

b

5
. (3)

According to a standard procedure in the solution of quartic equations,
upon the change of variable z = x + 1

2 , Eq. (3) can be rewritten as

z4 +

(
1

2
+

3v

5

)
z2 +

(
v2

25
+

v

20
+

1

80
− b

5

)
= 0. (4)
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Sketch of the proof (cont)
Finally, since this is a biquadratic equation, we change once again to
t = z2 = (x + 1

2 )2 to obtain the main equation to characterize the
structure of λ and, thereafter, spectrum, ambiguity and deficiency in Fq:

t2 +

(
1

2
+

3v

5

)
t +

(
v2

25
+

v

20
+

1

80
− b

5

)
= 0. (5)

Depending on the discriminant δt of Eq. (5) being a square (SQ), a
non-square (NS) or zero, we obtain the number of solutions for t, roots of
Eq. (5), that are in the field Fq. Then, based on each solution for t being
SQ, NS or zero, we determine the exact number (0, 1, 2, 3 or 4) of
solutions for z in Fq.

Let α = 1
2 + 3v

5 . The discriminant and the solutions for t of Eq. (5) are

δt =
(v + 1)2 + 4b

5
and t =

1

2

(
−α±

√
δt

)
. (6)
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Sketch of the proof (cont)

The classification of the values of δt and t as SQ, NS or zero leads to a
distribution of the b’s among the multiplicities of the solutions for z . This
distribution is based on the quadratic residuocity of δt and, in a second
level, the quadratic residuocity of the t’s accounts for the number of
different solutions for z (roots) to Eq. (4).

The parameter δt , shown in Eq. (6), is linearly dependent on b, so it
assumes all values in Fq. Since q is odd, besides 0, exactly q−1

2 values in
Fq can be squares. This gives the first level in the division of the q values
of b into three categories. Further, the distribution of the solutions
depends on the parameter α being zero or not. Then a complete
characterization of the roots of ∆Fv ,1(x) = b in Fq, according to the
possible quantities of different solutions for z in Fq (0, 1, 2, 3 or 4), can be
done.

The quantities corresponding to several branches in this classification are
computed with the aid of multiplicative characters.
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Characters

A character χ is a homomorphism from a finite Abelian group G into the
multiplicative group U of complex numbers of absolute value 1 that
satisfies, for all g1, g2 ∈ G , χ(g1g2) = χ(g1)χ(g2). The trivial character ε
is defined by ε(g) = 1, for all g ∈ G . If χ 6= ε, we define χ(0) = 0. In
particular, a nontrivial character χ is quadratic if χ(a) = 1 when a is
nonzero square and −1 when a is nonsquare.

Let χ be the quadratic character of the multiplicative group of Fq. It is
well known that χ(a) =

(
a
p

)
, the Legendre symbol, if q = p is prime. In

this case, χ(2) = (−1)
p2−1

8 . Following similar arguments, for any finite
field Fq, we can obtain

χ(2) = (−1)
q2−1

8 . (7)
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Characters (cont)

Theorem 5.48 in Lidl-Niederreiter Let f (x) = a2x
2 + a1x + a0 ∈ Fq[x ]

with q odd and a2 6= 0. Put d = a2
1 − 4a0a2 and let χ be a quadratic

character of Fq. Then

∑
c∈Fq

χ(f (c)) =

{
−χ(a2) if d 6= 0;
(q − 1)χ(a2) if d = 0.

Using this theorem, we compute the value of SA,B =
∑

x∈F∗q χ(A + Bx2),

q odd, for some constants A,B ∈ F∗q. The results, shown in Table 3, are
required to compute the full values of spectrum, ambiguity and deficiency.
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Conclusions and further work

This fix a gap in the literature: give differential spectrum and related
measures for low degree normalized polynomials. This implies in solving
low degree equations over finite fields.

The boomerang uniformity of all normalized permutation polynomials of
low degree over finite fields was recently studied by Y. Wang, Q. Wang
and W.G. Zhang (talk at Fq14).

Further work:

Degree 7? Only partial results exist.

Crytographic use?
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