
Recent uses of Boolean and vectorial
functions and related problems

Claude Carlet Universities of Bergen and Paris 8

Outline

We present a chapter from a forthcoming book on Boolean and

vectorial functions. This chapter is devoted to :

I Physical attacks and related problems on functions and codes

- A new role of correlation immunity and of the dual distance of

codes related to side channel attack (SCA) countermeasures,

- Minimizing the number of nonlinear multiplications for reducing the

cost of countermeasures against SCA,

- Vectorial functions and threshold implementation,

- Linear complementary dual codes and complementary pairs of codes

used for direct sum masking,

1

- Robust codes, algebraic manipulation detection (AMD) codes.

I Fully homomorphic encryption (FHE), hybrid symmetric-FHE pro-

tocols for the cloud, and related questions on Boolean functions

(with restricted inputs).

I Local pseudorandom generators (the Goldreich pseudorandom ge-

nerator) and related criteria on Boolean functions.

I The Gowers norm on pseudo-Boolean functions.

2

Forthcoming book on Boolean and vectorial
functions

The new book is a reorganized and completed version of two chapters

by C.C. in a CUP monography (Y. Crama and P. Hammer Eds.) :

Boolean Functions for Cryptography and Error Correcting Codes

Vectorial Boolean Functions for Cryptography

The new book is entitled :

Boolean Functions for Cryptography and Coding Theory

3

Since these chapters were written (in 2009), about 1500 papers

have been published in this domain.

New notions on Boolean and vectorial functions and new ways of

using them have also emerged.

In this talk, we present the chapter devoted to these recent and/or

not enough studied directions of research.

Tentative table of content of the new book :

4

Contents

1 Introduction to cryptography, codes, Boolean and vectorial

functions page 15

1.1 Cryptography 15

1.1.1 Symmetric versus public-key cryptosystems 16

1.1.2 Block ciphers versus stream ciphers 17

1.2 Error correcting codes 18

1.2.1 Detecting and correcting capacities of a code 19

1.2.2 Parameters of a code 21

1.2.3 Linear codes 21

1.2.4 Cyclic codes 25

1.2.5 The MacWilliams identity and the notion of dual distance 29

1.3 Boolean functions 33

1.3.1 Boolean functions and stream ciphers 34

1.3.2 Boolean functions and error correcting codes 39

1.4 Vectorial functions 40

1.4.1 Vectorial functions and stream ciphers 40

1.4.2 Vectorial functions and block ciphers 40

1.4.3 Vectorial functions and error correcting codes 42

2 Generalities on Boolean and vectorial functions 43

2.1 A hierarchy of equivalence relations over Boolean and vectorial

functions 43

2.1.1 Relations between these equivalences 45

2.2 Representations of Boolean functions and vectorial functions 46

2.2.1 Algebraic normal form 47

2.2.2 Univariate and trace representations 57

2.2.3 Bivariate representation of functions with even number

of input bits 63

2.2.4 Representation over the reals (numerical normal form) 64

2.3 The Fourier-Hadamard transform and the Walsh transform 69

2.3.1 Fourier-Hadamard transform of pseudo-Boolean functions 69

2.3.2 Fourier-Hadamard and Walsh transforms of Boolean

functions 71 5

Contents 9

2.3.3 Properties of the Fourier-Hadamard and Walsh trans-

forms of Boolean functions 74

2.3.4 Fourier-Hadamard transform and numerical normal form 83

2.3.5 The size of the support of the Fourier-Hadamard trans-

form and Cayley graphs 87

2.3.6 The Walsh transform of vectorial functions 88

2.3.7 The multidimensional Walsh transform 91

2.4 Fast computation of S-boxes 92

3 Boolean functions, vectorial functions and cryptography 93

3.1 Cryptographic criteria (and related parameters) for Boolean

functions 93

3.1.1 Balancedness 94

3.1.2 Algebraic degree 94

3.1.3 Nonlinearity and higher order nonlinearity 95

3.1.4 Correlation immunity and resiliency 103

3.1.5 Algebraic immunity and fast algebraic immunity 106

3.1.6 Variants to these criteria in relationship with guess and

determine attacks 114

3.1.7 Avalanche criteria, inexistence of nonzero linear structure,

correlation with subsets of indices 114

3.1.8 Complexity parameters 120

3.2 Cryptographic criteria for vectorial functions in stream and block

ciphers 130

3.2.1 Balancedness of vectorial functions 130

3.2.2 Algebraic degree of vectorial functions 133

3.2.3 Nonlinearity of vectorial functions 134

3.2.4 Algebraic immunity of vectorial functions 146

3.3 Cryptographic criteria and parameters for vectorial functions in

stream ciphers 149

3.3.1 Correlation immunity and resiliency of vectorial functions 150

3.3.2 Unrestricted nonlinearity of vectorial functions 152

3.4 Cryptographic criteria and parameters for vectorial functions in

block ciphers 156

3.4.1 Di↵erential uniformity 156

3.4.2 Other features also related to attacks 165

3.5 Search for functions achieving the desired features 165

3.5.1 The di�culty of designing good S-boxes 165

3.5.2 Constructions versus computer investigations of Boolean

and vectorial functions 166

3.6 Boolean and vectorial functions for secret sharing, authentication,

di↵usion 168

3.6.1 Secret sharing, access structures and minimal codes 168

3.6.2 Authentication schemes 173

6

10 Contents

3.6.3 Vectorial functions and di↵usion layers in block ciphers 173

4 Boolean functions, vectorial functions and error correcting codes 174

4.1 Reed-Muller codes 174

4.1.1 Minimum distance and minimum weight codewords 176

4.1.2 Dual 177

4.1.3 Automorphism group 178

4.1.4 Cyclicity of the punctured code R⇤(r, n) 178

4.1.5 The problem of determining the weight distributions of

Reed-Muller codes 179

4.1.6 Covering radius 180

4.2 Other codes related to Boolean functions 182

4.2.1 Linear codes 182

4.2.2 Unrestricted codes 183

4.2.3 Codes and di↵usion layers in block ciphers 184

4.2.4 Codes and association schemes 185

4.2.5 Codes and secret sharing 185

5 Functions with weights, Walsh spectra and nonlinearities easier to study 186

5.1 A�ne functions and their combinations 186

5.1.1 A�ne functions 186

5.1.2 Maiorana-McFarland functions 186

5.1.3 Niho and PSap functions 189

5.2 Quadratic functions and their combinations 192

5.2.1 Quadratic Boolean functions 192

5.2.2 Concatenations of quadratic functions 201

5.3 Cubic functions 202

5.4 Indicators of flats 203

5.4.1 Concatenations of sums of indicators of flats and a�ne

functions 204

5.5 Normal functions 204

5.6 Functions admitting (partial) covering sequences 205

5.6.1 The case of Boolean functions 205

5.6.2 The case of vectorial functions 208

5.7 Functions with low univariate degree 211

6 Bent functions and plateaued functions 212

6.1 Bent Boolean functions 213

6.1.1 Extended a�ne invariance of bentness and automorphism

group of a function 215

6.1.2 Characterization of bentness by the derivatives 215

6.1.3 Characterization of bentness by power moments of the

Walsh transform 216

6.1.4 Characterization of bentness by the NNF 218 7

Contents 11

6.1.5 Characterization of bentness by codes 219

6.1.6 Characterization of bentness by di↵erence sets, relative

di↵erence sets and structures of finite geometries 220

6.1.7 Bent Boolean functions and designs 221

6.1.8 The dual of a bent Boolean function 221

6.1.9 Bound on algebraic degree and related properties 225

6.1.10 Bent Boolean functions and a�ne subspaces 226

6.1.11 A�ne spaces of bent Boolean functions 227

6.1.12 The graph of bent functions 229

6.1.13 Bent Boolean functions of low algebraic degrees 229

6.1.14 Bent Boolean functions in few variables 232

6.1.15 Primary constructions of bent Boolean functions 233

6.1.16 Secondary constructions of bent Boolean functions 259

6.1.17 Decompositions of bent functions 267

6.1.18 Class GPS and a geometric characterization of bent

Boolean functions 268

6.1.19 On the number of bent Boolean functions 269

6.1.20 Hyper-bent, homogeneous, symmetric and rotation

symmetric bent Boolean functions 271

6.1.21 Normal and non-normal bent Boolean functions 279

6.1.22 Kerdock codes 281

6.2 Partially-bent and plateaued Boolean functions 283

6.2.1 Partially-bent functions 283

6.2.2 Plateaued Boolean functions 286

6.2.3 Characterizations of plateaued Boolean functions 287

6.2.4 The subclasses of semi-bent and near-bent functions 290

6.2.5 Primary constructions of plateaued Boolean functions 291

6.2.6 Secondary constructions of plateaued Boolean functions 293

6.3 Bent4 and partially-bent4 functions 294

6.4 Bent vectorial functions 296

6.4.1 Primary constructions of bent vectorial functions 297

6.4.2 Secondary constructions of bent vectorial functions 300

6.5 Plateaued vectorial functions 302

6.5.1 Characterizations of plateaued vectorial functions 303

6.5.2 CCZ and EA equivalence of plateaued functions 309

6.5.3 Constructions of plateaued vectorial functions 309

7 Correlation immune and resilient functions 311

7.1 Correlation immune and resilient Boolean functions 311

7.1.1 Bound on the correlation immunity order 312

7.1.2 Bounds on algebraic degree 312

7.1.3 Bounds on the nonlinearity 314

7.1.4 Bound on the maximum correlation with index subsets 317

7.1.5 Relationship with other criteria 317

8

12 Contents

7.1.6 Relationship with covering sequences 318

7.1.7 Primary constructions of correlation immune and resilient

functions 318

7.1.8 Secondary constructions of correlation immune and

resilient functions 325

7.1.9 On the number of correlation immune and resilient functions 339

7.2 Resilient vectorial Boolean functions 341

7.2.1 Constructions of resilient vectorial Boolean functions 342

8 Functions satisfying SAC, PC, EPC, or having good GAC 347

8.1 PC(l) criterion 347

8.1.1 Characterizations 348

8.1.2 Constructions 348

8.2 PC(l) of order k and EPC(l) of order k criteria 349

8.3 Functions having good sum-of-squares indicator and/or good

absolute indicator 350

9 Algebraic immune functions 351

9.1 Algebraic immune Boolean functions 351

9.1.1 General properties of the algebraic immunity and its

relationship with some other criteria 354

9.1.2 The problem of finding functions achieving high algebraic

immunity and high nonlinearity 365

9.1.3 The functions with high algebraic immunity found so far

and their parameters 366

9.1.4 Secondary constructions of algebraic immune functions 373

9.1.5 Another direction of research of Boolean functions

suitable for stream ciphers 376

9.1.6 An additional condition modifying the study of Boolean

functions for stream ciphers 377

9.2 Algebraic immune vectorial functions 377

9.2.1 Known bounds on algebraic immunities 379

9.2.2 Bounds on the numbers dn,m and Dn,m 379

9.2.3 Consequences on the number of output bits and on the

tightness of the bounds 381

9.2.4 Nonlinearity and higher order nonlinearity 382

9.2.5 Constructions of algebraic immune vectorial functions 383

10 Particular classes of Boolean functions 385

10.1 Symmetric functions 385

10.1.1 Representation 385

10.1.2 Fourier-Hadamard and Walsh transforms 387

10.1.3 Nonlinearity 388

10.1.4 Resiliency 390

9

Contents 13

10.1.5 Algebraic immunity and fast algebraic immunity 391

10.1.6 The subclass of threshold functions 392

10.2 Rotation symmetric, idempotent and other similar functions 395

10.3 Direct sums of monomials 397

10.3.1 Triangular functions 398

10.4 Monotone functions 398

11 Highly nonlinear vectorial functions with low di↵erential uniformity 403

11.1 The covering radius bound; bent/perfect nonlinear functions 404

11.2 The Sidelnikov-Chabaud-Vaudenay bound 405

11.3 Almost perfect nonlinear and almost bent functions 405

11.3.1 Characterizations of AB and APN functions 407

11.3.2 The particular case of power functions 416

11.3.3 Componentwise APNness (CAPNness) 423

11.3.4 Plateaued APN functions 424

11.4 The known infinite classes of AB functions 427

11.4.1 Power AB functions 427

11.4.2 Non-power AB functions 429

11.5 The known infinite classes of APN functions 432

11.5.1 Sporadic APN (and AB) functions 432

11.5.2 Power APN functions 432

11.5.3 Non-power APN functions 437

11.5.4 The extended Walsh spectra of known APN functions 445

11.5.5 Conclusion on known APN functions 445

11.6 Di↵erentially uniform functions 446

11.6.1 Characterizations by the Walsh transform 446

11.6.2 Componentwise Walsh uniformity (CWU) 448

11.6.3 Cyclic di↵erence sets, cyclic-additive di↵erence sets and

the CWU property 448

11.6.4 The known di↵erentially 4-uniform (n, n)-permutations,

n even 450

11.6.5 Other di↵erentially 4-uniform (n, n)-functions 455

11.6.6 Other Di↵erentially uniform (n, n)-functions 456

11.6.7 On the best di↵erential uniformity of (n, m)-functions 456

12 Recent uses and problems on Boolean and vectorial functions 458

12.1 Physical attacks and related problems on functions and codes 458

12.1.1 A new role of correlation immunity and of the dual

distance of codes related to side channel attack counter-

measures 465

12.1.2 Vectorial functions in univariate form: minimizing the

number of nonlinear multiplications for reducing the cost

of countermeasures 467

12.1.3 Vectorial functions and algebraic side channel attacks 470

10

14 Contents

12.1.4 Vectorial functions and threshold implementation 470

12.1.5 Linear complementary dual codes and complementary

pairs of codes used for direct sum masking 479

12.1.6 Robust codes, algebraic manipulation detection (AMD)

codes and vectorial functions 482

12.2 Fully homomorphic encryption and related questions on Boolean

functions 489

12.2.1 The FLIP cipher 490

12.2.2 Boolean functions with restricted inputs 492

12.3 Local pseudorandom generators and related criteria on Boolean

functions 504

12.3.1 The Goldreich pseudorandom generator 504

12.4 The Gowers norm on pseudo-Boolean functions 506

13 Open questions 512

13.1 Questions of general cryptography dealing with functions 512

13.2 General questions on Boolean functions and vectorial functions 512

13.3 Bent functions and plateaued functions 513

13.4 Correlation immune and resilient functions 514

13.5 Algebraic immune functions 514

13.6 Highly nonlinear vectorial functions with low di↵erential uniformity 515

13.7 Recent uses and problems on Boolean and vectorial functions 516

References 517

14 Appendix: finite fields 588

14.1 Prime fields and fields with 4, 8 and 9 elements 588

14.1.1 Characteristic of a finite field 588

14.1.2 Prime fields 589

14.1.3 Possible size of a finite field 589

14.1.4 Extending prime fields; fields with 4, 8 and 9 elements 590

14.2 General finite fields. Construction of finite fields, primitive element 591

14.2.1 The fundamental equation over finite fields 592

14.2.2 Existence of finite fields 593

14.2.3 Uniqueness of finite fields 594

14.2.4 Frobenius automorphism 595

14.2.5 Primitive element 595

14.3 Representation (additive and multiplicative) ; trace function 596

14.3.1 Trace function 597

14.3.2 Subfields and other trace functions 598

14.4 Permutations on a finite field 599

14.4.1 Examples of permutation polynomials 599

14.4.2 General results on permutation polynomials 601

14.5 Equations over finite fields 602

Index 606

11

Physical attacks and related problems on functions
and codes

The implementation of cryptographic algorithms in embedded

devices leaks information on the data manipulated by the algorithm,

leading to side channel attacks (SCA).

The attacker model is then not a black box but a greay box.

This information can be traces of electromagnetic emanations,

power consumption, photonic emission...

12

SCA are very powerful on block ciphers if countermeasures are not

included in the implementation of the cryptosystems.

A sensitive variable Z is chosen in the algorithm, whose value is

stored in a register and depends on the plaintext and a few key bits.

The register leaks.

The emanations from the register are measured. They disclose a

noisy version of a real-valued function L of the sensitive variable, for

instance the Hamming weight of Z.

A statistical method finds then the value of the key bits which

optimizes the correlation between the traces and a modeled leakage.

13

The original implementation of the AES can be attacked this way

in a few seconds with a few traces.

Counter-measures exist.

Most common : mask each sensitive variable Z by splitting it.

• 2 shares : Z ⊕M ‖ M , where M is drawn at random.

14

For going through boxes :

In hardware (FPGA, ASIC, ...) : use memory avoiding leak.

In software (smart cards) : transform every function x 7→ F (x) in

the algorithm into a function F ′ : (m0,m1) 7→ (m′0,m
′
1) such that :

m′0 +m′1 = F (m0 +m1)

and the knowledge of one intermediate variable does not give any

information on x.

Such F ′ is called a masked version of F .

15

Masking linear functions is costless but masking S-boxes has a

cost.

In software applications (smart cards), masking the algorithm can

multiply by more than 20 the execution time.

In hardware applications (ASIC, FPGA), the implementation area

is roughly tripled.

• The counter-measure of masking with a single mask (i.e. two

shares) cannot resist Higher order SCA (HO-SCA).

16

Higher order masking :

d+ 1 shares : M1, . . . ,Md are chosen at random and

Md+1 = Z ⊕M1, · · · ⊕Md.

The complexity of the HO-SCA attack (in time and in the number

of traces) is exponential in the order : O(V d), where V is the variance

of the noise.

The cost in running time and memory is quadratic in d.

Hence, theoretically, the designer can take advantage over the

attacker.

17

But the implementation must be efficient today while the SCA

can be performed in the future (→ advantage for the attacker).

Hence it is important to be able to implement high order masking

and therefore to reduce the cost of counter-measures against SCA.

I A new role of correlation immunity and of the dual distance of
codes related to side channel attack (SCA) countermeasures

Rotating S-boxes Masking (RSM, hardware) :

to avoid leakage, the mask M is not processed at all.

Instead, the computation for the next S-box is done with a Look-

Up-Table (LUT) of the masked S-box S′(x) = S(x⊕M)⊕M ′.
18

This allows a perfect protection against SCA.

But having a LUT for each masked version of each S-box is not

possible for reasons of memory.

A small number of S-boxes are then embedded already masked in

the implementation.

At every encryption, the allocation of the S-box is random.

19

The countermeasure resists the d-th order attack if and only if the

indicator f of the mask set satisfies

∀a ∈ Fn2 , 1 ≤ wH(a) ≤ d⇒
∑
x∈Fn2

(−1)f(x)+a·x = 0.

Equivalently, the indicator of M is a d-CI function, that is, M is

a code of dual distance at least d+ 1.

For d as large as possible, we look for such functions of minimum

nonzero Hamming weight, since the lower the weight of this function,

the cheaper the countermeasure.

20

I Vectorial functions in univariate form : minimizing the num-
ber of nonlinear multiplications for reducing the cost of
countermeasures

The complexity of masking additions and linear multiplications (like

x × x) is negligible compared to that of masking nonlinear multipli-

cations.

We need to minimize the masking complexity of each S-box : the

number of nonlinear multiplications needed to implement it.

For power functions F (x) = xd, minimizing the number of nonli-

near multiplications results in minimizing addition chains in a group.

21

The inverse function x→ x254 = x−1 in F28 can be implemented

with 4 nonlinear multiplications.

Most recent methods for general functions :

— The Coron-Roy-Vivek (CRV) method :

- starts with a union C of cyclotomic classes Ci in Z/(2n − 1)Z,

- the set of corresponding monomials xj spans a subspace P of

F2n[x].

- r polynomials P1(x), ..., Pr(x) are chosen in P and r + 1

polynomials Pr+1(x), ..., P2r+1(x) are searched in P such that :

P (x) =

r∑
i=1

Pi(x)× Pr+i(x) + P2r+1(x) .

22

This method works heuristically.

— The CPRR method :

- starts by deriving a family of generators :{
G1(x) = F1(x)

Gi(x) = Fi
(
Gi−1(x)

) where the Fi are random polynomials

of algebraic degree s.

- randomly generates t polynomials Qi =
∑r
j=1Lj ◦Gj, where the

Lj are linearized polynomials.

- searches for t polynomials Pi of algebraic degree s and for r + 1

linearized polynomials Li such that :

P (x) =
t∑
i=1

Pi
(
Qi(x)

)
+

r∑
i=1

Li
(
Gi(x)

)
+ L0(x) .

23

For masking P (x), we use that for any function F of algebraic

degree at most s :

F
(d∑
i=1

ai

)
=

s∑
j=0

µd,s(j)
∑

I⊆{1,...,d}
|I|=j

F
(∑
i∈I

ai

)
,

where µd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j ≤ s.

24

I Vectorial functions and threshold implementation

Masking is efficient only if the leakage has some regularity.

In particular, hardware glitches, common in CMOS technology,

change the leaking into functions L having numerical degree larger

than 1, because of the interactions between bits that they cause.

Glitch-free hardware is very expensive.

• A way of addressing glitches is the so-called polynomial masking,

based on multiparty computation.

The masking operation is based on Shamir’s secret sharing.

Not quite practical.

25

• Another S-box masking method, also based on ideas of multiparty

computation, is threshold implementation (TI) :

— each input variable xi is masked into

xi = (xi,1, . . . , xi,t+1) ∈ Ft+1
2 .

We have s(xi) = xi,1 ⊕ · · · ⊕ xi,t+1 = xi.

Extending s to a function over F(t+1)n
2 , we have then

s(x) = x,∀x = (x1, . . . , xn).

A t-realization of F is

F = (F1, . . . , Ft+1) : F(t+1)n
2 7→ F(t+1)m

2 such that :

26

— Correctness : if x = s(x), then F (x) = s(F(x)).

— Non-completeness : every Fj is independent of the j-th coordinate

of each xi.

— Uniformity : for every b = (b1, b2, . . . , bt+1) in F(t+1)m
2 , we have :

|{x ∈ F(t+1)n
2 ; F(x) = b}| = 2t(n−m) × |{x ∈ Fn2 ; F (x) = s(b)}|

(if F is a permutation then F is a permutation).

This property is needed to compose several TI’s.

It is the difficult one to achieve !

27

Indeed, if dalg(F) ≤ t, then replacing each xi in F (x) by the sum

xi,1⊕· · ·⊕xi,t+1 and storing in Fj all those monomials with indices

different from j, we ensure correctness and non-completeness.

Conversely :

Proposition 1. Let F be any (n,m)-function admitting a t-mask

(i.e. a (t + 1)-share) TI with or without uniformity. Then the al-

gebraic degree of F is at most t.

For instance, the inverse function F (x) = x2
n−2 cannot have an

(n− 1)-share (with (n− 2)-masks) TI.

Even for quadratic functions, there does not always exist a TI with

uniformity of minimum number of masks (that is, with 2 masks).

28

The TI cost of a function increases exponentially with its degree.

This drawback can be bypassed by expressing functions as the

compositions of lower algebraic degree functions.

Uniformity is ensured by introducing fresh randomness.

But randomness is costly too. So more work on TI is needed.

29

I Linear complementary dual codes and complementary pairs of

codes used for direct sum masking

Direct sum masking consists in :

— encoding the sensitive data, say x ∈ Fk2, into a codeword of a

k-dimensional linear subcode C of Fn2 ,

— encoding the mask y drawn at random in Fn−k2 into a codeword

of an (n− k)-dimensional linear subcode D of Fn2 .

The masked version of x equals then the sum of these two codewords.

If G is a generator matrix of C and G′ a generator matrix of D, we

take then :

z = x×G+ y ×G′.
30

For allowing the final demasking at the end of the computation, C

and D must have trivial intersection, that is, be supplementary :

Fn2 = C ⊕D.

Every vector z ∈ Fn2 can then be written in a unique way as

z = x×G+ y ×G′; x ∈ Fk2, y ∈ Fn−k2 .

d-th order masking and another known method called inner pro-

duct masking are particular cases of DSM.

Contrary to these other methods, it can be also a countermeasure

against FIA.

31

A pair (C,D) of supplementary codes is called a linear comple-

mentary pair (LCP) of codes.

If the leak L as a pseudo-Boolean function has numerical degree

1, the encoding with an LCP of codes (C,D) protects against :

— d-th order HO-SCA if and only if the dual distance of D satisfies

d(D⊥) > d,

— the injection of d errors if and only if d(C) > d.

If D = C⊥, then C and D are so-called linear complementary dual

(LCD) codes.

The security parameter of an LCD code C when used in so-called

orthogonal direct sum masking (ODSM) is then simply d(C)− 1.

32

The notion of LCD code is anterior to DSM, due to Yang and

Massey.

We denote G′ by H and

z = x×G+ y ×H implies :

z ×Ht = y ×H ×Ht and z ×Gt = x×G×Gt.
The matrices H ×Ht and G×Gt are invertible.

Since the introduction of DSM, a hundred papers have proposed

constructions.

33

I Robust codes, algebraic manipulation detection (AMD) codes and

vectorial functions

In many cases of error detection, the assumption that the most

probable errors have low Hamming weight cannot be guaranteed.

It is even often almost impossible to predict the error patterns.

This situation of unpredictability is similar to FIA where the error

distribution within a device is controlled by an adversary.

A large enough minimum distance is then not efficient for a code.

34

Definition 2. A code C ⊂ Fnq (linear or not) is called R-robust if :

RC = max
0 6=e∈Fnq

|C ∩ (e+ C)| ≤ R.

A binary R-robust code C of length n with M = |C| is denoted by

a triple (n,M,R).

The code can be systematic, i.e. we can have, up to permutation :

C = {(x, F (x));x ∈ FIq}.

This is more practical for error detection in computer hardware thanks

to the separation between information bits and check bits.

35

The probability of error masking equals :

Q(e) =
|C ∩ (e+ C)|

|C| . (1)

The worst error masking probability maxe 6=0 Q(e) equals then RC
|C|.

A code is called robust if this value is strictly less than 1.

We have :

max
e 6=0

Q(e) ≥ |C| − 1

qn − 1
.

A code is called uniformly robust or perfect robust if there is equality,

i.e. Q(e) is constant for e 6= 0, i.e. C is a difference set in (Fnq ,+).

If q = 2, the indicator function of C is bent.

36

Then dC = 1 and the code cannot be systematic.

Proposition 3. (Kulikowski, Karpovsky, Taubin)

Let C = {(x, F (x)), x ∈ Fk2}, where F : Fk2 7→ Fr2. The worst error

masking probability of C equals the differential uniformity of F

divided by 2k, and is then bounded below by 2−r and equals this

optimum if and only if F is perfect nonlinear.

Indeed, denoting e = (a, b), we have :

|C ∩ (e+ C)| =

∣∣∣∣{(x, y) ∈ (Fk2)2;
{
x = y + a

F (x) = F (y) + b

}∣∣∣∣
=
∣∣(DaF)

−1(b)
∣∣ .

37

The efficiency of these codes depends on the fact that the data

be uniformly distributed.

This limitation can be overcome by (strong) algebraic manipulation

detection (AMD) codes.

Algebraic manipulation : the attacker is able to modify the value

of some abstract data storage device denoted by
∑

(G), without

having read-access to the data.

The attacker is not able to obtain information about the element g

stored in
∑

(G).

However, he can add an error e ∈ G of his choice.

38

This models the situation with linear secret sharing schemes with

dishonest players, who can cause the reconstruction of a modified

secret s′ 6= s, and can control s − s′, thanks to the linearity of the

secret sharing.

Algebraic manipulation detection (AMD) codes encode an original

information s ∈ S as an element of g ∈ G in such way that any

algebraic manipulation is detected with high probability.

No secret key is needed.

39

Definition 4. An AMD code is a pair of two functions :

- a probabilistic encoding function E : S → G,

- a deterministic decoding function D : G→ S∪{⊥}, where ⊥6∈ S
symbolizes that algebraic manipulation has been detected, satisfying

that D(E(s)) = s with probability 1 for every s ∈ S.

The AMD code is called ε-secure for ε > 0 if, for every s ∈ S and

for every e ∈ G, the probability that D(E(s) + e) /∈ {s,⊥} is at

most ε.

A systematic AMD code is an AMD code in which set S is a group

and the encoding function E has the form

E : S → G = S ×G1 ×G2

s→ (s, x, F (x, s)).
(2)

40

Fully homomorphic encryption and related
questions on Boolean functions

Recent years :

1. Proliferation of small embedded devices with limited computing

facilities,

2. Apparition of cloud services with extensive storage and computing

facilities.

The outsourcing of data processing raises new privacy concerns.

Users want to prevent the server from learning about their data.

41

Gentry’s Fully Homomorphic Encryption (FHE) scheme brings a

perfect conceptual answer :

CH(m+m′) = CH(m) +CH(m′); CH(mm′) = CH(m)CH(m′).

If Alice wants to compute f(m), she can send CH(m) to Claude,

who computes f(CH(m)) = CH(f(m)).

After decryption, Alice gets f(m), but Claude has not learned any-

thing about m nor about f(m) (but he knows f).

But in practice, CH(m) is too large for Alice.

Alice needs then to use a hybrid Symmetric Encryption-FHE protocol.

42

Typical Framework :

1. Initialization. Alice sends to Claude :

- her homomorphic public key pkH,

- the homomorphic ciphertext of her symmetric key CH(skS).

2. Storage. Alice encrypts her data m with the symmetric encryption

scheme CS, and sends CS(m) to Claude.

3. Evaluation. Claude calculates CH(CS(m)) and homomorphically

evaluates the decryption of the symmetric scheme on Alice’s data

and gets CH(m).

4. Computation. Claude homomorphically executes the treatment f

on Alice’s data, and gets CH(f(m)).

43

5. Result. Claude sends CH(f(m)) and Alice gets f(m).

Bottleneck :

2nd and 3rd generations of FHE are noise-based (LWE) and need

expensive “bootstrapping” when the noise grows too much.

The choice of the symmetric cipher CS is central for reducing cost.

The multiplicative depth of AES being too large, other symmetric

encryption schemes have been investigated :

— a stream cipher : Kreyvium (FSE 2016),

— block ciphers LowMC (EUROCRYPT 2015), Rasta (CRYPTO

2018).

44

I The FLIP cryptosystem (EuroCrypt 2016)

The stream cipher FLIP (Méaux, Journault, Standaert, C.C., EURO-

CRYPT 2016) is based on a cipher model called the filter permutator.

. Key register K

Pi

F

plaintext

ciphertext

PRNG

Perm.
Generator

Figure 1: Filter permutator construction.

45

Function F has N = n1 + n2 + n3 ≥ 500 variables, where n2 is

even and n3 =
k(k+1)

2 t. It is defined as :

F (x0, . . . , xn1−1, y0, . . . , yn2−1, z0, . . . , zn3−1) =

n1−1∑
i=0

xi +

n2/2−1∑
i=0

y2i y2i+1+

t∑
j=1

Tk

(
z(j−1)k(k+1)

2
, z(j−1)k(k+1)

2 +1
, . . . , z(j−1)k(k+1)

2 +
k(k+1)

2 −1

)
,

where the so-called triangular function Tk is defined as :

Tk(z0, . . . , zj−1) = z0 + z1z2 + z3z4z5 + · · ·+ zk(k−1)
2
· · · zk(k+1)

2 −1.

46

FLIP : 4 filtering functions proposed :

Name N n1 n2 t k λ

FLIP-530 530 42 128 8 9 80

FLIP-662 662 46 136 4 15 80

FLIP-1394 1394 82 224 8 16 128

FLIP-1704 1704 86 238 5 23 128

Table 1: N : total number of variables, n1 : linear part, n2 :

quadratic part, t : number of triangular functions, k : degree of the

triangular functions ; λ : resulting security parameter.

47

There exists a Guess and Determine attack on a preliminary version

of FLIP, by Sébastien Duval, Virginie Lallemand and Yann Rotella

(CRYPTO 2015).

It is not efficient on the regular version of FLIP.

But, by definition, in the filter permutator, the input to F has

constant Hamming weight (equal to the weight of the secret key).

The study of Boolean functions on such restricted sets of inputs

have been made (C.C., P. Méaux, Y. Rotella, S. Mesnager et al.).

48

Local pseudorandom generators and related criteria
on Boolean functions

Principle : allow expanding short random strings (like private keys),

called seeds, into pseudorandom strings, whose length is significantly

larger, say, O(ns) where n is the length of the seed.

Called local if each output bit depends on a constant number d of

input bits.

Only known example : Goldreich’s PRG, which applies a simple

d-variable Boolean function (Goldreich calls it a d-ary predicate) to

public random subsets of size d of the seed.

49

Let (S1, . . . , Sm) be a list of m subsets of {1, . . . , n} of size d, and

let f be a Boolean function in d variables (the so-called predicate).

The corresponding Goldreich’s function G : Fn2 7→ Fm2 is defined as

G(x) = f(S1(x)), f(S2(x)), . . . , f(Sm(x))

for every x ∈ Fn2 , where Si(x) is a vector made of those bits of x

indexed by Si.

• To avoid an attack by Gaussian elimination, the predicate f must

not be linear.

• The higher the algebraic degree, the better (a predicate of algebraic

degree s cannot be pseudorandom for a stretch s).

50

• The predicate must be such that, when fixing some number r of

input bits to f , its algebraic degree remains large.

• The algebraic immunity AI(f) plays also a direct role and should

be large enough (larger than s).

• There is also an attack when the output to the function is correlated

with a number of its input bits smaller than or equal to s
2, and f

should then be resilient with a sufficient order. At least 2-resilient.

Example of a 5-variable function : f(x) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5.

51

A general structure has been proposed for predicates :

the direct sum of
⊕k

i=1 xi and of the majority function in n − k
variables.

No attack is known on such functions when k ≥ 2s and dn−k2 e ≥ s.

Open question by Applebaum and Lovett : given e and k, what is

the smallest number of variables of a Boolean function of algebraic

immunity at least e and of resiliency order at least k ?

52

The Gowers norm on pseudo-Boolean functions

The Gowers uniformity norm has been introduced in 2001 in

relation with arithmetic progressions in partitions of {1, 2, . . . ,M}.

Intensively studied (by several Field medal winners) since 2001

and applied in additive combinatorics and in the probabilistic testing

of specific properties of Boolean functions (knowing only a few of

their values).

53

Definition 5. Let k, n be positive integers such that k < n. Let

ϕ : Fn2 7→ R. The kth-order Gowers uniformity norm of ϕ equals :

||ϕ||Uk =

Ex,x1,...,xk∈Fn2

 ∏
S⊆{1,...,k}

ϕ

(
x+

∑
i∈S

xi

) 1
2k

,

where Ex,x1,...,xk∈Fn2 is the notation for arithmetic mean (i.e. for

expectation in uniform probability).

When ϕ is the sign function of a Boolean function f , this results

in a measure related to the higher order nonlinearity.

54

For every ϕ, the sequence
(
||ϕ||Uk

)
k≥1 is non-decreasing :

||ϕ||U1 ≤ ||ϕ||U2 ≤ · · · ≤ ||ϕ||Uk ≤ . . .

For every k ≥ 2, || · ||Uk is a norm :

||ϕ||Uk = 0 iff ϕ = 0 and ||ϕ+ ψ||Uk ≤ ||ϕ||Uk + ||ψ||Uk.

For ϕ = fχ = (−1)f , ||fχ||Uk equals the 2k-th root of the average

value of 2−nF(Da1Da2 . . . Dakf), where F(g) =
∑
x∈Fn2

(−1)g(x),
when a1, a2, . . . , ak range independently over Fn2 .

We have ||fχ||Uk ≤ 1, with equality if and only if f has algebraic

degree at most k − 1.

55

||fχ||U2 is related to the second moment V(f) of the autocorrela-

tion coefficients by :

(||fχ||U2)
4 = 2−3n V(f). (3)

We have :

nl(f) ≤ 2n−1 − 2n−1(||fχ||U2)
2 ≤ 2n−1 − 2

3n
4 −1||fχ||U2,

and these two inequalities are equalities if and only if f is bent.

56

We have also :

||fχ||U2 = 2−n

∑
b∈Fn2

W 4
f (b)

1
4

, (4)

that is, up to a multiplicative coefficient, ||fχ||U2 equals the quartic

mean of the Walsh transform of f .

57

