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Among functions, codes and combinatorial designs
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Linear codes

Let q be a power of a prime and let GF(q) be the finite field with q
elements.

Let GF(q)n denote the vector space with dimension n over GF(q).

The weight of c ∈ GF(q)n is the number of nonzero coordinates in
c = (c0,c1, . . . ,cn−1).

An [n,k ,d] linear code C over GF(q) is a k -dimensional subspace of
GF(q)n with minimum (Hamming) distance d .

The dual C⊥ of C is defined by

C⊥ = {w ∈ GF(q)n : w ·c = 0 for all c ∈ C},

where w = (w0, . . . ,wn−1), c = (c0, . . . ,cn−1) and w ·c = ∑
n−1
i=0 wici is the

Euclidean inner product.
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Functions and polynomials

A function f from GF(q) to itself can be identified as a polynomial
∑

q−1
i=0 cix i ∈ GF(q)[x], where ci ∈ GF(q).

By a special function or polynomial over a finite field we mean a
polynomial either of special form or with special property. For instance,
monomials, permutation polynomials and APN functions are special
functions. Special functions or polynomials have interesting applications
to cryptography, coding theory and combinatorial designs. For instance,
the Dickson polynomials x5 +ax3 +a2x over GF(3m) led to a 70-year
breakthrough in searching for new skew Hadamard difference sets.
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t-designs
t-designs

A t-design with parameters t-(ν,k ,λ) is a pair D= (P ,B) where t ≤ k and:
1 P is a ν-element set of points;
2 B is a family of k -element subsets of P called blocks;
3 Every t-element subset of P is in exactly λ blocks.

For convenience, D= (P ,B) is also called a t-design if B = /0.
A t-design is called simple if B does not contain repeated blocks. In this
talk, we consider only simple t-designs.
The parameters of a t-design are not independent, since they satisfy(

ν

t

)
λ =

(
k
t

)
|B| .

A 2-design with an equal number of points and blocks is called a
symmetric design.
A t-(ν,k ,1) design is called a Steiner system denoted by S(t,k ,ν).
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t-designs from linear codes

t-designs from linear codes

Let C be a linear code over GF(q). Let P (C ) = {0,1, . . . ,ν−1} be the set of
the coordinate positions of C , where ν is the length of C . For a codeword
c = (c0, . . . ,cν−1) in C , the support of c is defined by

Supp(c) = {i : ci 6= 0, i ∈ P (C )}.

Let Bw(C ) = {Supp(c) : wt(c) = w and c ∈ C}. For some special C ,
(P (C ),Bw(C )) is a t-design. If (P (C ),Bw(C )) is a t-design for any t ≤ w ≤ ν,
we say that the code C supports t-designs.
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Assmus-Mattson Theorem

The Assmus-Mattson theorem is a very famous theorem relating linear codes
and combinatorial designs.

Theorem 1 (Assmus-Mattson)

Let C be a binary linear code of length ν over GF(q) with minimum weight d.
Let C⊥ with minimum weight d⊥ denote the dual code of C . Let
t (1≤ t < min{d ,d⊥}) be an integer such that there are at most d⊥− t
weights of C in {t +1, t +2, . . . ,ν− t}. Then (P (C ),Bk(C )) and
(P (C⊥),Bk(C⊥)) are t-designs for all k ∈ {t +1, t +2, . . . ,ν}.

If one would like to employ the Assmus-Mattson Theorem for the
construction of t-designs, one has to settle the weight distribution of linear
code and the minimum distance of its dual at the same time.
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Linear codes from t-designs

Linear codes from t-designs

Let D= (P ,B) be a t-design and P = {p1, . . . ,pν}. For any block B ∈ B , the
characteristic vector of B is defined by the vector cB = (c1, . . . ,cν) ∈ {0,1}ν,
where

ci =

{
1, if pi ∈ B,
0, if pi 6∈ B.

For a prime p, a linear code Cp(D) over the prime field GF(p) from the design
D is spanned by the characteristic vectors of the blocks of D, which is the
subspace Span{cB : B ∈ B} of the vector space GF(p)ν.

A t-design D= (P ,B) induces a linear code Cp(D) over GF(p) for any prime p.
Linear codes Cp(D) from designs D have been studied and documented in the
literature [Assmus, Key, 1992].

E. F. Assmus Jr., J. D. Key. Designs and Their Codes, Cambridge University Press, Cambridge, 1992.
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Fano plane
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Finite projective plane

The Fano plane is the projective plane arising from the finite field GF(2). It
is the smallest projective plane, with only seven points and seven lines.

In the figure above, the seven points are shown as small blue points, and
the seven lines are shown as six line segments and a circle.

We can give a description of the seven points and the seven lines using
homogeneous coordinates.
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Finite projective plane

A = (1 : 0 : 0), B = (0 : 1 : 0),
C = (0 : 0 : 1), D = (0 : 1 : 1),
E = (1 : 0 : 1), F = (1 : 1 : 0),
G = (1 : 1 : 1).

B ⇐⇒ Lines:

{B,D,C}↔ x = 0

{C,E ,A}↔ y = 0

{A,F ,B}↔ z = 0

{A,G,D}↔ y + z = 0

{B,G,E}↔ z + x = 0

{C,G,F}↔ x + y = 0

{D,E ,F}↔ x + y + z = 0
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2-(7,3,1)−designs

P = {A,B,C,D,E ,F ,G}.
B :

{B,D,C}
{C,E ,A}
{A,F ,B}
{A,G,D}
{B,G,E}
{C,G,F}
{D,E ,F}
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[7,4,3] linear code from Fano plane

Blocks and codewords of weight 3

B ⇐⇒ Codewords:

{B,D,C}↔ (0,1,1,1,0,0,0)

{C,E ,A}↔ (1,0,1,0,1,0,0)

{A,F ,B}↔ (1,1,0,0,0,1,0)

{A,G,D}↔ (1,0,0,1,0,0,1)

{B,G,E}↔ (0,1,0,0,1,0,1)

{C,G,F}↔ (0,0,1,0,0,1,1)

{D,E ,F}↔ (0,0,0,1,1,1,0)

The linear code C over GF(2) from the design of the Fano plane is a [7,4,3]
linear code.
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2-designs from the [7,4,3] linear codes

2-(7,3,1) design

{B,D,C}↔ (0,1,1,1,0,0,0)

{C,E ,A}↔ (1,0,1,0,1,0,0)

{A,F ,B}↔ (1,1,0,0,0,1,0)

{A,G,D}↔ (1,0,0,1,0,0,1)

{B,G,E}↔ (0,1,0,0,1,0,1)

{C,G,F}↔ (0,0,1,0,0,1,1)

{D,E ,F}↔ (0,0,0,1,1,1,0)

2-(7,4,2) design

{A,E ,F ,G}↔ (1,0,0,0,1,1,1)

{B,D,F ,G}↔ (0,1,0,1,0,1,1)

{C,D,E ,G}↔ (0,0,1,1,1,0,1)

{B,C,E ,F}↔ (0,1,1,0,1,1,0)

{A,C,D,F}↔ (1,0,1,1,0,1,0)

{A,B,D,E}↔ (1,1,0,1,1,0,0)

{A,B,C,G}↔ (1,1,1,0,0,0,1)

The [7,4,3] linear code C holds a 2-(7,3,1) design and a 2-(7,4,2) design.
These two designs are complementary.
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Affine functions and Fano plane

A = (1,0,0), B = (0,1,0), C = (0,0,1), D = (0,1,1),
E = (1,0,1), F = (1,1,0), G = (1,1,1).

B ⇐⇒ Codewords⇐⇒ Affine functions:

{B,D,C}↔ (0,1,1,1,0,0,0)↔ x +1

{C,E ,A}↔ (1,0,1,0,1,0,0)↔ y +1

{A,F ,B}↔ (1,1,0,0,0,1,0)↔ z +1

{A,G,D}↔ (1,0,0,1,0,0,1)↔ y + z +1

{B,G,E}↔ (0,1,0,0,1,0,1)↔ z + x +1

{C,G,F}↔ (0,0,1,0,0,1,1)↔ x + y +1

{D,E ,F}↔ (0,0,0,1,1,1,0)↔ x + y + z +1

Every characteristic vector of a block of the design from Fano plane can be
identified as the truth table of affine function ax +by + cz +1 at the non-zero
points of GF(2)3, where (a,b,c) is a non-zero vector in GF(2)3. The linear
code from this design is just the punctured code from the first order
Reed-Muller code over GF(2)3.
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Functions, codes and t-designs

A lot of good codes are constructed from functions. In turn, many special
functions can be characterized by coding theory.

Linear codes and t-designs are companions. On one hand, the
characteristic vectors of the blocks of a t-design generates a linear code.
On the other hand, the supports of codewords of a fixed Hamming weight
in a code may form a t-design under certain conditions.

Our main goal is to establish a more direct link between functions and
combinatorial designs. The main bridge is the group action.
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A triangle relation
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Combinatorial designs from group actions
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Group action

Group action
If G is a group and P is a set, then a (left) group action ρ of G on P is a
function

ρ : G×P → P
(g,x) 7→ ρ(g,x)

that satisfies the following two axioms (where we denote ρ(g,x) as g · x):
1 Identity: 1 · x = x for all x in P .
2 Compatibility: (gh) · x = g · (h · x) for all g,h in G and all x in P .

G is said to be t-transitive on P , if for any two ordered t-subsets of P ,
there is a g ∈ G such that g sends the former to the latter.

G is said to be t-homogeneous on P , if for any two t-subsets of P , there
is a g ∈ G such that g sends the former to the latter.
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General affine group

General affine group GA1(q)

The general affine group GA1(q) of degree one consists of all the following
permutations of the finite field GF(q):

πa,b(x) = ax +b,

where (a,b) ∈ GF(q)∗×GF(q). It is a group under the function composition
operation, and is interesting, as it is 2-transitive on GF(q) and has a small
group size.
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t-designs via t-homogeneous groups

Orbit of k -subsets
Let B be a k -subset of P and g(B) = {g ·x : x ∈ B}, where g ∈ G. The orbit of
B under the action of G is G(B) = {g(B) : g ∈ G}, and the stabilizer of B
under the action of G is GB = {g ∈ G : g(B) = B}. The incidence structure
S(B) := (P ,G(B)) may be a t-(ν,k ,λ) design for some λ, where P is the point
set, B is called a base block, and the incidence relation is the set membership.
In this case, we say that the base block B supports a t-design and (P ,G(B))
is called the orbit design of B.

Theorem
Let G be t-homogeneous on P and let B ⊆ P be any k -element subset with
t < k < ν = |P |, then the incidence structure (P ,G(B)) is a t-(ν,k ,λ) design,
where λ = |G|

|GB |(k
t)

.
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2-designs from 1-transitive groups

Difference set
A (ν,k ,λ) difference set is a subset D of size k of a group G of order ν such
that every nonidentity element of G can be expressed as a product d1d−1

2 of
elements of D in exactly λ ways. A difference set D is said to be cyclic,
abelian, non-abelian, etc., if the group G has the corresponding property.

2-designs from 1-transitive group

Let P = G and let D be a k -subset of P . Then (P ,G(D)) is always a 1-design.
If D is a (ν,k ,λ) difference set, (P ,G(D)) is a 2-(ν,k ,λ) design, called the
development of D. The group G acts as an automorphism group of the
design. It is transitive on both points and blocks.
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Fano plane and (7,3,1)-difference set in Z7

A = 6, B = 1, C = 4, D = 2, E = 3, F = 5, G = 0.

B ⇐⇒ Translates of {1,2,4}:

{B,D,C}↔ {1,2,4}= 0+{1,2,4}
{C,E ,A}↔ {4,3,6}= 2+{1,2,4}
{A,F ,B}↔ {6,5,1}= 4+{1,2,4}
{A,G,D}↔ {6,0,2}= 5+{1,2,4}
{B,G,E}↔ {1,0,3}= 6+{1,2,4}
{C,G,F}↔ {4,0,5}= 3+{1,2,4}
{D,E ,F}↔ {2,3,5}= 1+{1,2,4}
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3-designs from 2–transitive group GA1(q)
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3-designs from 2-transitive group GA1(q)
Motivation
Let P = GF(q) and G = GA1(q), which is 2-transitive. Then the incidence
structure (GF(q),GA1(q)(B)) is always a 2-design. Our main motivation is to
study how to choose a base block B ⊆ GF(q) properly such that
(GF(q),GA1(q)(B)) is a 3-design.
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Characteristic functions of base blocks
Walsh transform
For any Boolean function f from GF(2n) to GF(2), the Walsh transform of f at
µ ∈ GF(2n) is defined as

f̂ (µ) = ∑
x∈GF(2n)

(−1)f (x)+Tr(µx),

where Tr(·) is the absolute trace function from GF(2n) to GF(2). All the values
f̂ (µ) are also called the Walsh coefficients of f . The Boolean function f is said
to be semi-bent if {f̂ (µ) : µ ∈ GF(2n)}= {0,±2

n+1
2 }.

Characteristic functions of base blocks
Let B be a subset of GF(q). Then, the characteristic function fB(x) of B is
given by

fB(x) =

{
1, x ∈ B,
0, otherwise.
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A characterization of base blocks supporting 3-designs

Let E be any subset of GF(q) and a,b,c ∈ GF(q), then define

NE(a,b,c) = |{ax +by + cz = 0 : x ,y ,z ∈ E}|.

Theorem 2
Let B be a k-subset of GF(q) with k ≥ 3 and B = GA1(q)(B). Then, the
following are equivalent:

1 (GF(q),B) is a 3-design.
2 ∑x ,y∈GF(q)(−1)fB(x)+fB(y)+fB(ux+(1+u)y) is independent of u, where

u ∈ GF(q)\GF(2).
3 ∑α∈GF(q) f̂B(α)̂fB(uα)̂fB((1+u)α) is independent of u, where

u ∈ GF(q)\GF(2).
4 NB(u,1+u,1) is independent of u, where u ∈ GF(q)\GF(2).
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More efficient characterization

If f̂B(µ) is the composition of a power function µd and the Walsh transformation
f̂E of a simpler function fE , we have the following more practical and efficient
characterization of the base block B supporting 3-design.

Theorem 3
Let B be a k-subset of GF(q) with k ≥ 3 and B = GA1(q)(B). Let E be a
subset of GF(q) such that f̂B(µ) = f̂E(µd) for any µ ∈ GF(q), where
gcd(d ,q−1) = 1. Then, the following are equivalent:

1 (GF(q),B) is a 3-design.
2 ∑x ,y∈GF(q)(−1)fE (x)+fE (y)+fE (ud x+(1+u)d y) is independent of u, where

u ∈ GF(q)\GF(2).
3 ∑α∈GF(q) f̂E(α)̂fE(ud α)̂fE((1+u)d α) is independent of u, where

u ∈ GF(q)\GF(2).
4 NE(ud ,(1+u)d ,1) is independent of u, where u ∈ GF(q)\GF(2).
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A characterization of 3-designs by solutions of some
equation

In the case fE(x) = Tr(x t), we have the following characterization of the base
block B supporting 3-design by solutions of some equation.

Theorem 4
Let B be a k-subset of GF(q) with k ≥ 3 and B = GA1(q)(B). Suppose that
f̂B(µ) = ∑x∈GF(q)(−1)Tr(x t+µd x) for any µ ∈ GF(q), where gcd(td ,q−1) = 1.
Then, (GF(q),B) is a 3-design, if and only if,

|{x ∈ GF(q) :
(
ud x +(1+u)d)t

+ x t +1 = 0}|

is independent of u, where u ∈ GF(q)\GF(2).
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The stabilizer of the base block

The following theorem gives a sufficient condition for the stabilizer of the base
blocks under the action of the general affine group to be trivial, which is used to
determine parameters of designs derived from some special base blocks.

Theorem 5
Let B,E be two subsets of GF(q) such that fE is a semi-bent function from
GF(q) to GF(2). Suppose that f̂B(µ) = f̂E(µd) for any µ ∈ GF(q) and
Supp(̂fE) 6= b ·Supp(̂fE) for any b ∈ GF(q)\GF(2), where gcd(d ,q−1) = 1.
Then

GA1(q)B = {x}.

Hence, |GA1(q)(B)|= q(q−1).
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3-designs from APN functions
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APN and AB functions

APN function
A function F from GF(q) to itself is called almost perfect nonlinear (APN), if
F(x +a)+ f (x) = b has at most two solutions in GF(q) for every pair
(a,b) ∈ GF(q)∗×GF(q).

AB function

F is said to be almost bent (AB) if WF (a,b) = 0, or ±2
n+1

2 for every pair (a,b)
with a 6= 0, where

WF (a,b) = ∑
x∈GF(q)

(−1)Tr(aF(x)+bx).

Every AB function is an APN function. The converse is not true in general
(counter-examples: inverse function, Dobbertin function).
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Known APN power functions xs

1 s = 2i +1 with gcd(i,n) = 1 (Gold functions);
2 s = 22i −2i +1 with gcd(i,n) = 1 (Kasami functions);

3 s = 2
n−1

2 +3 with n odd ( Welch functions);
4 s = 2

n−1
2 +2

n−1
4 −1 with n ≡ 1 (mod 4),

s = 2
n−1

2 +2
3n−1

4 −1 with n ≡ 3 (mod 4) (Niho functions);
5 s = 2n−2 with n odd (inverse functions);
6 s = 2

4n
5 +2

3n
5 +2

2n
5 +2

n
5 −1 with n ≡ 0 (mod 5) (Dobbertin functions).

Known AB power functions
When n is odd, Gold functions, Kassami functions, Welch functions and Niho
functions over GF(2n) are AB functions.
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Codes from AB functions

Codes from functions
For any function F from GF(2m) to GF(2m), we define the following linear code

CF = {
(
Tr2m/2(aF(x)+bx)+h

)
x∈GF(2m)

: a, b ∈ GF(2m),h ∈ GF(2)}. (1)

Theorem 6 (Codes from AB functions)
Let m ≥ 5 and let F be an AB function. The code CF of (1) has parameters
[2m,2m+1,2m−1−2(m−1)/2] and weight enumerator

A(z) = 1+uz2m−1−2(m−1)/2
+ vz2m−1

+uz2m−1+2(m−1)/2
+ z2m

, (2)

where
u = 22m−1−2m−1 and v = 22m +2m−2.

The dual code C⊥F has parameters [2m,2m−m−1,6].
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3-designs from the codes associated with AB functions
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Cunsheng, Ding

Designs from linear codes

World Scientific, 2018
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The first construction of 3-designs from Kassami APN
functions by group actions

3-designs from Kassami APN functions

Let gcd(2,n) = 1 and gcd(i,n) = 1. Thus 1
3 and 1

2i+1 exist. Define

B = GF(q)\
{
((x +1)s + xs +1)

1
2i+1 : x ∈ GF(q)

}
,

where s = 22i −2i +1. In this case, we also denote the base block B by KAn,i .
We shall study the incidence structure

KAn,i = (GF(2n),GA1(2
n)(KAn,i)) .

Remarks

In fact, if no exponent 1
2i+1 appears, the resulting block also supports 3-design.

However, in this case, we do not know how to prove the corresponding result.
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The Walsh transform of the characteristic function of KAn,i

Lemma 7

Let n be an odd integer and i be a positive integer with gcd(i,n) = 1. Let
B = KAn,i . Then for all µ ∈ GF(q) we have

f̂B(µ) = f̂E

(
µ

2i+1
3

)
= ∑

x∈GF(q)
(−1)

Tr
(

x3+µ
2i+1

3 x

)
,

where E = {x ∈ GF(q) : Tr(x3) = 1}.

J. F. Dillon, H. Dobbertin. New cyclic difference sets with Singer parameters. Finite Fields and Their Applications, 10(3): 342-389, 2004.
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The equation associated with KAn,i

Lemma 8

Let σ1,σ2,σ3 ∈ GF(2n) such that σ2
1 6= σ2 and σ3 6= σ1σ2. Then the cubic

equation x3 +σ1x2 +σ2x +σ3 = 0 has a unique solution x ∈ GF(2n), if and
only if

Tr
(

(σ2 +σ2
1)

3

(σ3 +σ1σ2)2 +1

)
= 1.

Lemma 9

Let n be an odd integer and i be a positive integer with gcd(i,n) = 1. Then the
cubic equation (

ud x +(1+u)d)3
+ x3 +1 = 0

has a unique solution x ∈ GF(2n), where d ≡ 2i+1
3 (mod 2n−1) and

u ∈ GF(2n)\GF(2).

Chunming Tang (HKUST) t-designs from Functions June 18, 2019 40 / 70



3-design KAn,i = (GF(q),GA1(q)(KAn,i))

Theorem 10

Let n be an odd integer and i be a positive integer with gcd(i,n) = 1. Let
B = KAn,i . Then the incidence structure KAn,i = (GF(q),GA1(q)(B)) is a

3-
(

q, q
2 ,

q(q−4)
8

)
design.

It is observed that KAn,i and KAn,n−i are isomorphic. Thus, we only need to
consider the 3-design KAn,n−i , where 1≤ i ≤ n−1

2 and gcd(i,n) = 1.

C. Tang. Infinite families of 3-designs from APN functions. arXiv:1904.04071, 2019.
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Another construction of 3-designs from APN functions

3-designs from APN functions

Let xs be an APN function over GF(q) with gcd(s,q−1) = 1. Define the base
block Bs as

Bs = {(x +1)s + xs : x ∈ GF(q)}. (3)

Since xs is APN, the function (x +1)s + xs is 2-to-1. Thus, |Bs|= q
2 . In this

case, we also denote the base block Bs by APn,s. We shall study the incidence
structure

APn,s = (GF(2n),GA1(2
n)(APn,s)) .

When s = 2i +1, we have the following theorem on 3-designs APn,s.

Theorem 11

Let n ≥ 4 and s = 2i +1, where n/gcd(i,n) is odd. Then the incidence
structure APn,s = (GF(q),GA1(q)(APn,s)) is a 3-(q,q/2,(q−4)/4).
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The case for special Kasami APN functions
Proposition 12

Let n = 3i±1 and s = 22i −2i +1, where i is an even positive integer. Then,

f̂Bs(µ) = f̂E(µd) = ∑
x∈GF(q)

(−1)
Tr
(

x2i+1+µd x
)
,

where E = {µ : Tr(x2i+1) = 1} and d ≡ 1
s (mod 2n−1).

Proposition 13

Let n = 3i±1 and s = 22i −2i +1, where i is an even positive integer. Let
d ≡ 1

s (mod 2n−1). Then, the incidence structure APn,s is a 3-design, if and
only if, ∣∣∣{x ∈ GF(2n) :

(
ud x +(1+u)d)2i+1

+ x2i+1 +1 = 0
}∣∣∣

is independent of u, where u ∈ GF(q)\GF(2).
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Equations associated with special Kasami APN functions
Conjecture 1

Let n = 3i±1 and s = 22i −2i +1, where i is an even positive integer. Let
u ∈ GF(q)\GF(2). Then, the equation(

ud x +(1+u)d)2i+1
+ x2i+1 +1 = 0

has a unique solution x ∈ GF(2n), where d ≡ 1
s (mod 2n−1).

Conjecture 1 was confirmed by Magma for n ∈ {5,7,11,13}. If Conjecture 1 is
true, the base block Bs ⊆ GF(2n) supports a 3-design, where n = 6i±1 and

s = 24i −22i +1. The equation
(
ud x +(1+u)d

)2i+1
+ x2i+1 +1 = 0 may be

reduced to Pa(x) = x2i+1 + x +a = 0, which has been considered in many
papers.

A. W. Bluher. On xq+1 +ax +b. Finite Fields and Their Applications, 10(3), 285305, 2004.

T. Helleseth, A. Kholosha. On the equation x2l+1 + x +a = 0 over GF(2k ). Finite Fields and Their Applications, 14(1):159-176, 2008.

K. K. Kim, S. Mesnager. Solving x2k +1 + x +a = 0 in F2n with gcd(n,k) = 1. arXiv:1903.07481, 2019.
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The uniqueness of the solution of the equation

Although the equation
(
ud x +(1+u)d

)2i+1
+ x2i+1 +1 = 0 can be

reduced to the equation x2i+1 + x +a = 0, the expression of a on u is
extremely complicated.

To solve Conjecture 1, one may need the following results.

Theorem 14
For any a ∈ GF(2n)∗ and a positive integer i with n = 3i−1, the polynomial
Pa(x) = x2i+1 + x +a has either none, one, or three zeros in GF(2n). Further,

Pa(x) has exactly one zero in GF(2n) if and only if Tr
(

Rn, 1
3
(a−1)+1

)
= 1,

where Rn, 1
3
(x) = x22i+2i+1 + x22i+2i−1 + x22i−2i+1 + x2i+1 + x.

Therefore, the discriminating conditions for the unique solution of such
equations are also complicated. The complexity of these two aspects makes it
difficult to prove that the original equation has a unique solution.
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More conjectured 3-designs from APN functions
Conjecture 2 (3-designs from Kassami functions)

Let n ≥ 5 be odd. Let s = 22i −2i +1 with gcd(3i,n) = 1. Then the incidence

structure APn,s = (GF(q),GA1(q)(APn,s)) is a 3-
(

q, q
2 ,

q(q−4)
8

)
design.

Conjecture 3 (3-designs from Welch functions)

Let n ≥ 5 be odd and s = 2
n−1

2 +3. Then the incidence structure
APn,s = (GF(q),GA1(q)(APn,s)) is a 3-

(
q, q

2 ,
q(q−4)

8

)
design.

Conjecture 4 (3-designs from Niho functions)

Let n ≥ 5 be odd. Then the incidence structure
APn,s = (GF(q),GA1(q)(APn,s)) is a 3-

(
q, q

2 ,
q(q−4)

8

)
design, where

s = 2
n−1

2 +2
n−1

4 −1 with n ≡ 1 (mod 4);

s = 2
n−1

2 +2
3n−1

4 −1 with n ≡ 3 (mod 4) .
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3-designs from APN functions

We present two general constructions of 3-designs from APN functions
over finite fields. The first construction has produced infinite families of
3-designs from Kassami APN functions over GF(2n).

Because the Walsh transformations of the character functions of the base
blocks in the second construction are very complex and irregular, it seems
difficult to study these conjectured 3-designs by Walsh transformations.
We may need other techniques to prove these conjectured 3-designs.
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3-designs from o-polynomials
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Arcs in the projective plane PG(2,GF(q))

Definition
An arc in PG(2,GF(q)) is a set of at least three points in PG(2,GF(q)) such
that no three of them are collinear.

Example

The set of points of PG(2,GF(q))

A = {(t2 : t : 1) : t ∈ GF(q)}∪{(1 : 0 : 0)}

is an arc with q+1 points in PG(2,GF(q)).
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Ovals in PG(2,GF(q))
Theorem 15

If A is an arc of PG(2,GF(q)), then

|A | ≤
{

q+1 if q is odd,
q+2 if q is even.

Definition
An oval O in PG(2,GF(q)) is a set of q+1 points such that no three of them
are collinear, i.e., an arc with q+1 points.

Example
Let q ≥ 4. Then

O = {(t2 : t : 1) : t ∈ GF(q)}∪{(1 : 0 : 0)}

is an oval in PG(2,GF(q)).
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Conics in PG(2,GF(q))

Definition
A conic in PG(2,GF(q)) is a set of points of PG(2,GF(q)) that are zeros of a
nondegenerate homogeneous quadratic form f (x ,y ,z) in three variables.

Example

Let P be the point set of PG(2,GF(q)), and let f (x ,y ,z) = y2− xz. Then the
set

C = {(x : y : z) ∈ P : y2 = xz}= {(t2 : t : 1) : t ∈ GF(q)}∪{(1 : 0 : 0)}

is a conic in PG(2,GF(q)).
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Conics and Ovals in PG(2,GF(q))

Theorem 16
A conic is an oval in PG(2,GF(q)).

Theorem 17 (Segre)

An oval in PG(2,GF(q)) is a conic if q is odd.

Comment
For q odd, ovals and conics in PG(2,GF(q)) are the same.
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Hyperovals in PG(2,GF(q))

Definition

A hyperoval H in PG(2,GF(q)) is a set of q+2 points such that no three of
them are collinear, i.e., an arc with q+2 points.

Example
Let q = 2m with m ≥ 2. Then

H = {(t2 : t : 1) : t ∈ GF(q)}∪{(1 : 0 : 0)∪ (0 : 1 : 0)}

is a hyperoval in PG(2,GF(q)).

Theorem
Hyperovals in PG(2,GF(q)) do not exist for odd q.
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Hyperovals in PG(2,GF(q)) and [q+2,3,q] codes

Conclusion
Hyperovals in PG(2,GF(q)) and [q+2,3,q] MDS codes over GF(q) are the
same.

Theorem 18
The weight enumerator of a [q+2,3,q] MDS code over GF(q) is

1+
(q+2)(q2−1)

2
zq +

q(q−1)2

2
zq+2.

Remarks
Every line in PG(2,GF(q)) meets a hyperoval either in 0 point, or 2 points.

The weight enumerator says that a hyperoval has (q+2)(q+1)/2
secants, and q(q−1)/2 external lines.

Orthogonal arrays, 2-class association schemes.
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Hyperovals in PG(2,GF(q))

Remarks: Let q = 2m

Hyperovals can be constructed from the o-polynomials on GF(q).

Hyperovals can be employed to construct 2-((q−1)q/2,q/2,1) designs.

Hyperovals can be employed to construct 2-(q2−1, 1
2 q2−1, 1

4 q2−1)
symmetric designs (Hadamard designs), which can be extended into
3-(q2, 1

2 q2, 1
4 q2−1) designs.
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Hyperovals and polynomials

The next theorem shows that all hyperovals in PG(2,GF(q)) can be
constructed with a special type of permutation polynomials of GF(q).

Theorem 19 (Segre)

Let m ≥ 2. Any hyperoval in PG(2,GF(q)) can be written in the form

H (f ) = {(f (c) : c : 1) : c ∈ GF(q)}∪{(1 : 0 : 0)}∪{(0 : 1 : 0)},

where f ∈ GF(q)[x] such that
1 f is a permutation polynomial of GF(q) with deg(f )< q and f (0) = 0,

f (1) = 1;
2 for each a ∈ GF(q), ga(x) = (f (x +a)+ f (a))xq−2 is also a permutation

polynomial of GF(q).

Conversely, every such set H (f ) is a hyperoval.

Chunming Tang (HKUST) t-designs from Functions June 18, 2019 56 / 70



O-polynomials

O-polynomial
Polynomials satisfying the two conditions of Theorem 19 are called
o-polynomials, i.e., oval-polynomials. For example, f (x) = x2 is an
o-polynomial over GF(q) for all m ≥ 2.

Theorem 20 (Carlet and Msenager)

A polynomial F from GF(2n) to GF(2n) with F(0) = 0 is an o-polynomial if and
only if Fu := F(x)+ux is 2-to-1 for every u ∈ GF(2n)∗.

Carlet and Mesnager discovered a relation between Niho bent functions and
o-polynomials.

C. Carlet and S. Mesnager. On Dillons class H of bent functions, Niho bent functions and O-polynomials. In Journal of Combinatorial Theory,

Series A, Vol 118, no. 8, p. 2392-2410, 2011.
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O-monomials

Two o-polynomials f and g are said to be equivalent if the two hyperovals H (f )
and H (g) are equivalent. The o-monomials in the following theorem are
equivalent.

Theorem 21

Let xe be an o-polynomial over GF(q). Then every polynomial in{
x

1
e , x1−e, x

1
1−e , x

e
e−1 , x

e−1
e

}
is also an o-polynomial, where 1/e denotes the multiplicative inverse of e
modulo q−1.

Maschietti used o-monomials to construct new important difference sets.
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Known o-monomials

1 Transn,i(x) = x2i
, gcd(i,n) = 1.

2 Segren(x) = x6, n odd.

3 Glynnin(x) = x3×2(n+1)/2+4, n odd.

4 Glynniin(x) =

{
x2(n+1)/2+2(3n+1)/4

if n ≡ 1 (mod 4),

x2(n+1)/2+2(n+1)/4
if n ≡ 3 (mod 4).
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3-designs from o-monomials

Incidence structures from o-monomials
Let q = 2n and let xs be an o-monomial over GF(q). Let OVn,s be the
incidence structure (GF(2n),GA1(q)(OVn,s)), where

OVn,s = {xs + x : x ∈ GF(2n)}.

Theorem 22

Let f (x) = xs be an o-monomial over GF(q). Then OVn,s is a 3-design with
parameters (q,q/2,q(q−4)/8µ), where µ =

∣∣GA1(q)OVn,s

∣∣.
Remarks
To obtain the parameters of the 3-design from the o-monomial xs, we only
need to determine the stabilizer of the base block OVn,s. Usually, the stabilizer
is trivial.
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The proof of OVn,s being 3-designs

The proof mainly uses the following geometric facts of o-polynomials:

Hyperoval
Suppose that f is an o-polynomial. Let x1,x2 and x3 be three pairwise distinct
elements in GF(q). Then (f (x1) : x1 : 1), (f (x2) : x2 : 1), and (f (x3) : x3 : 1) are
three points in the hyperoval H (f ) defined by the o-polynomial f (x), and thus
are linearly independent over GF(q). That means the linear code
C = {(af (x)+bx + c)x∈GF(q) : a,b,c ∈ GF(q)} is a MDS code.

C. Ding, C. Tang. Combinatorial t-designs from special polynomials, arXiv: 1903.07375, 2019.
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Parameters of the 3-designs from o-monomials

Conjecture 5

Let q = 2n and let xs be an o-monomial over GF(q), where s is not a power of
2. Then

GA1(q)OVn,s = {x}.

Consequently, the design OVn,s has parameters 3-(q,q/2,q(q−4)/8).

Theorem 23

The incidence structure OVn,s is a 3-(q,q/2,q(q−4)/8) design if
f (x) = Segren(x) or f (x) = Glynniin(x).

More generally, let xs be an o-monomial with s = 2i +2j . Then the incidence
structure OVn,s is a 3-(q,q/2,q(q−4)/8) design.
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The isomorphy of 3-designs from o-polynomials

We point out that two equivalent o-polynomials may give two non-isomorphic
designs. For example, the two o-monomials x2 and xq−2 are equivalent, but
OVn,2 and OVn,q−2 are not isomorphic, as OVn,2 is a 3-(q,q/2,(q−4)/4)
design and OVn,q−2 is a 3-(q,q/2,q(q−4)/8) design. Hence, the
equivalence of o-polynomials is different from the isomorphy of designs OVn,s

from o-polynomials.
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The comparison of different constructions
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The comparison of different constructions

In general, it is extremely difficult to analyze the equivalence of t-designs
theoretically. We have given an isomorphic classification for the following
set of 3-designs from o-polynomials and APN functions for the case n = 5
via Magma: KA5,1,KA5,2,AP5,5,AP5,7,AP5,13,OV5,6,OV5,26,OV5,28,
OV5,4,OV5,24,OV5,8. These 3-designs are divided into seven distinct
equivalence classes: {KA5,1}, {KA5,2}, {AP5,7}, {OV5,24}, {OV5,28},
{AP5,5, OV5,4, OV5,8}, {AP5,13, OV5,6, OV5,26}.
Based on the above discussion, we next propose some conjectures,
which have been confirmed by Magma for n ∈ {5,7}.
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Conjectures on these 3-designs

Conjecture 6

Let n ≥ 5 be odd and i ∈
{

i : 1≤ i ≤ n−1
2 ,gcd(i,n) = 1

}
. Let φ(n) denote the

Euler’s totient function. Then the φ(n)
2 3-designs KAn,i are pairwise

non-isomorphic. Further, they are not equivalent to any designs APn,s from
APN power functions, and are slso not equivalent to any designs OVn,s from
o-monomials.

Conjecture 7

Let n ≥ 5 be odd and i ∈
{

i : 1≤ i ≤ n−1
2 ,gcd(i,n) = 1

}
. Then the φ(n)

2 binary
linear codes C2(KAn,i) are pairwise non-equivalence.

Chunming Tang (HKUST) t-designs from Functions June 18, 2019 66 / 70



Codes from these 3-designs

The codes C2(KA5,1), C2(KA5,2) and C2(KA7,1) have parameters
[32,11,12], [32,21,6] and [128,15,56], respectively. These codes are
optimal. The binary code C2(KA7,2) is a self-dual linear code with
parameters [128,64,16]. The examples of codes above demonstrate that
it is worthwhile to study 3-designs KAn,i and their codes C2(KAn,i) , as
these designs may yield optimal linear codes or self-dual binary codes.

The parameters of the codes from these 3-designs are very flexible. It will
also be challenging and interesting to study these codes.
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Concluding remarks
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Concluding remarks

Using group actions, infinite families of 3-designs are constructed by
employing APN functions and o-polynomials. Some 3-designs give rise to
self-dual binary codes or linear codes with optimal or best parameters
known. Thus, it is worthwhile to study 3-designs from functions and codes
associated with these designs.

Special functions and polynomials are very useful in the construction of
codes and combinatorial structures.

Functions, coding theory, combinatorics and finite geometry are very
much related. It would be very interesting to investigate their interplay.
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Thank you for your attention!!
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