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Preliminaries

Definitions and notations

• A function from Fn to F (= F2 = {0, 1}) is a Boolean
function (Bf). A set of all functions is denoted by Bn

• ANF for Bf: f (x1, ..., xn) =
∑
u∈Fn

au
∏n

i=1 x
ui
i where au ∈ F

• A function from Fn to Fn is a vectorial Boolean function
(vBf)

• vBf: F := (f1, ..., fn) where fi (in Bn) are called coordinate
functions

• A component of vBf F is Fλ = λ · F , with λ 6= 0 ∈ Fn
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Preliminaries

Definitions and notations

• deg(f ) = maxau 6=0w(u) and deg(F ) = maxλ∈Fn deg(Fλ)

• Weight of f : w(f ) = |{x ∈ Fn|f (x) = 1}|

• Balanced: w(f ) = 2n−1

• Affine functions: An = {g ∈ Bn| deg(g) ≤ 1}.
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Preliminaries

Definitions and notations

• Walsh Transform of f : Wf (a) =
∑

x∈Fn(−1)f (x)+a·x , with
a ∈ Fn

• Walsh Spectrum of Bf f : {Wf (a) | a ∈ Fn}

• Walsh Spectrum of vBf F : {WFλ
(a) | a, λ ∈ Fn}

• Bent: Wf (a) = ±2n/2, for all a ∈ Fn and n even

• Semi-bent f : Wf (a) ∈ {0,±2(n+1)/2}, for all a ∈ Fn and n
odd, Wf (a) ∈ {0,±2(n+2)/2}, for all a ∈ Fn and n even

• Plateaued: Wf (a) ∈ {0,±µ}, for some integer µ.
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Preliminaries

Affine Equivalence

• f and g are affine equivalent if there is an affinity
ϕ : Fn → Fn such that f = g ◦ ϕ. Write f ∼A g .

Proposition

Let f , g ∈ Bn be such that f ∼A g . Then w(f ) = w(g).
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Preliminaries

Theorem

Let f ∈ Bn be a quadratic Boolean function. Then

(i) f ∼A x1x2 + · · ·+ x2i−1x2i + x2i+1 with i ≤ bn−12 c, if f is
balanced,

(ii) f ∼A x1x2 + · · ·+ x2i−1x2i + c, with c ∈ F and i ≤ bn2c, if f is
unbalanced.

Lemma

Two (unbalanced) quadratic Bf’s g and h on Fn are affine
equivalent if and only if w(g) = w(h).
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Preliminaries

Proposition

If g(x1, ..., xn−1) is an arbitrary Bf then f = g(x1, ..., xn−1) + xn is
balanced.

(First order) derivative of f at a in Fn: Daf = f (x + a) + f (x)

Theorem

f ∈ Bn is bent if and only if Daf is balanced for any nonzero
a ∈ Fn.
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Preliminary

Definitions

• a ∈ Fn is a linear structure of f if Daf is a constant.

• We call the set of all linear structures of f the linear space of
f and its denoted by V (f ).

• If the only linear structure of f is a = 0, we say the linear
space is trivial.

• Let Γ(f ) = {a ∈ Fn | Daf is balanced}.
• Almost Perfect Nonlinear (APN): a vBf F with δ(F ) = 2

where
δ(F ) = max

a 6=0,b∈Fn
|{x ∈ Fn|DaF (x) = b}|.
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Quadratic power functions

Another vBf representation

Univariate polynomial over F2n :

F (x) =
2n−1∑
i=0

δix
i , (1)

where δi ∈ F2n and the degree of F is at most 2n − 1.

Power function: F (x) = xd , for some positive integer d .

Quadratic power function: is a power function with d = 2i + 2j

with i , j ≥ 0, i 6= j .
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Linear space of Balanced functions

Observation

• Any Bf can be expressed as:
f = xn+1g(x1, ..., xn) + h(x1, ..., xn).

• If f in Bn only depends on m variables (m < n), then f�Fm

denotes its restriction to these m variables.

Theorem

If f = xn+1g(x1, ..., xn) + h(x1, ..., xn), then

1. w(f ) = w((g + h)�Fn) + w(g�Fn),

2. f is balanced if g + h and h are both balanced,

3. f is unbalanced if one in {g + h, h} is balanced and another
one not.
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Linear space of Balanced functions

Lemma

Let f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with g , h ∈ Bn and let
α ∈ (an+1, a) ∈ F× Fn. Then

1. Dαf ∼A xn+1Dag + an+1g + Dah,

2. Dαf is constant if and only if Dag = 0 and Dah = an+1g + c ,
for some c ∈ F.

Proposition

If f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with n even, f ∈ Bn+1,
g , h ∈ Bn and g bent, then the linear space of f is trivial.
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g , h ∈ Bn and g bent, then the linear space of f is trivial.
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Linear space of Balanced functions

Proposition

Let f = xn+1g + h with g = g̃(x1, ..., xn−1) + xn and
h = h̃(x1, ..., xn−2) + xn−1. Then

• f is balanced and its linear space is trivial if n is odd and
g̃�Fn−1 is bent.

Corollary

Let f = x1g1 + · · ·+ xi−1gi−1 + gi , with
gi = g̃i (xi+1, ..., xn−i ) + xn−i+1, gi ∈ Bn−2i+1 and i ≤ bn/2c. Then

• f is balanced and its linear space is trivial if n is even and g̃1�Fn−2 is
bent.
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Linear space of Balanced functions

Observation

Any Bf can be represented in the form:

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn+1),

with g , h ∈ Bn. We call this convolutional product of g and h.

Proposition

Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with g , h ∈ Bn

and deg(h), deg(g) ≤ 2, be cubic. Then

• f is balanced if and only if both g and h are balanced or
g = h ◦ ϕ+ 1, for some affinity ϕ.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions



Linear space of Balanced functions

Observation

Any Bf can be represented in the form:

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn+1),

with g , h ∈ Bn. We call this convolutional product of g and h.

Proposition

Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with g , h ∈ Bn

and deg(h), deg(g) ≤ 2, be cubic. Then

• f is balanced if and only if both g and h are balanced or
g = h ◦ ϕ+ 1, for some affinity ϕ.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions



Linear space of Balanced functions

Observation

Any Bf can be represented in the form:

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn+1),

with g , h ∈ Bn. We call this convolutional product of g and h.

Proposition

Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with g , h ∈ Bn

and deg(h), deg(g) ≤ 2, be cubic. Then

• f is balanced if and only if both g and h are balanced or
g = h ◦ ϕ+ 1, for some affinity ϕ.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions



Linear space of Balanced functions

Proposition

Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with g , h ∈ Bn.
Then

• f is balanced if g and h are both balanced or g = h ◦ ϕ+ 1,
for some affinity ϕ,

• f is balanced if n is even, g�Fn and h�Fn are both bent with
w(g) 6= w(h),

• f is plateaued if n is even, g�Fn and h�Fn are both bent,

• the linear space of f is trivial if n is even, h�Fn is bent and
deg(f ) = max{deg(g), deg(h)}+ 1.
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APN functions in even dimension

Theorem [Well-known]

Let F be vBf from Fn into Fn. Then∑
λ∈Fn\{0}

∑
a∈Fn

F2(DaFλ) ≥ 22n+1(2n − 1).

Moreover, F is APN if and only if equality holds.

Lemma

Let f ∈ Bn, with n even, be such that dimV (f ) ≥ 1. Then

|Γ(f )| ≤ 2n − 4.
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APN functions in even dimension

Lemma

Let F be a vBf from Fn into Fn, with n even. If dimV (Fλ) ≥ 1,
for all λ ∈ Fn, then∑

λ∈Fn\{0}

∑
a∈Fn

F2(DaFλ) > 22n+1(2n − 1).

Theorem

Let F from Fn to Fn, with n even, be an APN. Then there is a
λ ∈ Fn \ {0} such that the linear space of Fλ is trivial.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions



APN functions in even dimension

Lemma

Let F be a vBf from Fn into Fn, with n even. If dimV (Fλ) ≥ 1,
for all λ ∈ Fn, then∑

λ∈Fn\{0}

∑
a∈Fn

F2(DaFλ) > 22n+1(2n − 1).

Theorem

Let F from Fn to Fn, with n even, be an APN. Then there is a
λ ∈ Fn \ {0} such that the linear space of Fλ is trivial.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions



Quadratic APN functions in even dimension

Proposition

For any Q : Fn → Fn, we have∑
λ∈Fn\{0}

(2dimV (Fλ) − 1) ≥ 2n − 1. (2)

Moreover, equality holds if and only if Q is APN.

Proposition

Let Q : Fn → Fn, with n even, be such that Qλ, with λ 6= 0, is
bent or semi-bent. Then Q is APN if and only if there are exactly
2
3(2n − 1) bent components.
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Quadratic APN functions in even dimension

Remark

The maximum number of bent components of vBf F : Fn → Fn is
2n − 2n/2 [Pott et al. 2018].
No plateaued APN functions can achieve the maximum number
[Mesnager et al., 2018].

Let B denote the number of bent components.
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Quadratic APN functions in even dimension

Theorem

Let Q : Fn → Fn, with n even, be APN. Then

2(2n − 1)/3 ≤ B ≤ 2n − 2n/2 − 2

where B = 2(2n − 1)/3 + 4t, for some integer t ≥ 0.

Remark

If t > 0, then there is a component which is not bent or semi-bent.

One known such quadratic APN with t > 0 is [Dillon, 2006]
F (x) = x3 + z11x5 + z13x9 + x17 + z11x33 + x48 defined over F26

and z is primitive. It has 46 bent components.
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Quadratic power functions

Theorem

Let F (x) = xd be a function in F2n [x ] where n is even and
d = 2j(2k + 1) with integer j ≥ 0, k ≥ 1. Let s = (n, 2k),
e = (2n − 1, 2k + 1). Then the

(i) number of bent components for F (x) is 2n − 2n−1
e − 1,

(ii) Walsh spectrum of F (x) is {0,±2(n+s)/2} if e = 1 and
{0,±2(n+s)/2,±2n/2} if e ≥ 3.

Remark

F (x) = xd , with d = 2j(2k + 1), has the maximum number of
bent components if and only if n = 2k (i.e. e = 2k + 1). In this
case F has only bent and affine components.
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Quadratic power functions

Corollary

Let F (x) = xd be a power polynomial in F2n [x ] where n is even
and d = 2j(2k + 1) with integer j ≥ 0, k ≥ 1. Let s = (n, 2k),
e = (2n − 1, 2k + 1). Then F (x) is APN if and only if e = 3 and
s = 2. Equivalently, F (x) is APN if and only if there are exactly
2(2n − 1)/3 bent components and the rest semi-bent.

Corollary

If a quadratic power function, in even dimension, has some bent
components, then they are at least 2(2n − 1)/3.
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