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(joint work with Lilya Budaghyan, Nikolay Kaleyski, Constanza Riera)

∗Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5212, U.S.A.

Let F2n be the finite field with 2n elements. We call a function from F2n to F2 a Boolean
function on n variables and denote the set of all such functions by Bn. For a Boolean func-
tion f : F2n → F2 we define the Walsh-Hadamard transform to be the integer valued func-
tion Wf (u) =

∑
x∈F2n

(−1)f(x)+Trn1 (ux), where Trn1 : F2n → F2 is the absolute trace function,

Trn1 (x) =
∑n−1

i=0 x
2i .

An (n,m)-function (often called a vectorial Boolean function if there is no need to explicitly
specify the dimensions n and m) is a map F : Fn

2 → Fm
2 . When m = n, it can be represented as

a univariate polynomial over F2n (using the natural identification of the finite field F2n with the

vector space Fn
2 ) of the form F (x) =

∑2n−1
i=0 aix

i, ai ∈ F2n . The algebraic degree of the function
is then the largest Hamming weight of an exponent i, with ai 6= 0. For an (n,m)-function F ,
we define the Walsh transform WF (a, b) to be the Walsh-Hadamard transform of its component
function Trm1 (bF (x)) at a, that is, WF (a, b) =

∑
x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n : F (x+a)+F (x) = b}|.
We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential uniformity of
F . If ∆F ≤ δ, then we say that F is differentially δ-uniform. If δ = 2, then F is an almost
perfect nonlinear (APN) function. There are several equivalent characterizations of APN-ness.
For example, F is APN if and only if

∑
a,b∈F2n

W4
F (a, b) = 23n+1(3 · 2n−1 − 1), if and only if∑

a,b∈F2n
W3

F (a, b) = 22n+1(3 · 2n−1 − 1) (under F (0) = 0), if and only if all the points x, y, z
satisfying F (x) + F (y) + F (z) + F (x+ y+ z) = 0, belong to the curve (x+ y)(x+ z)(y+ z) = 0
(we call this last one, the Rodier condition).

Along with S. Kwon, we previously introduced a notion of partial APN-ness in an attempt to
resolve a conjecture on the upper bound on the algebraic degree of APN functions. For a fixed
x0 ∈ F2n , we call an (n, n)-function a (partial) x0-APN function (which we typically refer to
as simply x0-APN, or just partially APN) if all points, x, y, satisfying F (x0) + F (x) + F (y) +
F (x0 + x+ y) = 0 (Rodier equation) belong to the curve (x0 + x)(x0 + y)(x+ y) = 0.

Certainly, an APN function is x0-APN for any point x0. An alternative way to express the
fact that a given function F is x0-APN is to say that for any a 6= 0 the equation F (x+a)+F (x) =
F (x0 + a) + F (x0) has only two solutions x, namely x0 and x0 + a.

Here, we theoretically and experimentally investigate the partial APN-ness of monomial func-
tions, which are known to be APN under certain conditions, and removing those constraints, we
find when they can be partially APN. We also show that the binomial F (x) = x2

n−1 + x2
n−2

over F2n is 1-APN but not 0-APN for n ≥ 3. We further derive some conditions under which
a polynomial of the form F (x) = x(Ax2 + Bxq + Cx2q) + x2(Dxq + Ex2q) + Gx3q for q = 2k

with 1 ≤ k ≤ n − 1 is (not) partial APN (this class of polynomials was suggested by Dillon
as containing potential APN or differentially 4-uniform functions). Since every APN function
is 0-APN as well, some of the results we obtain can be seen as non-existence results for APN
functions.


