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We propose a new primitive that could serve as a component in the design of block cipher
algorithms over a vector space of characteristic two. The primitive consists of squeezing a
vectorial non-linear boolean function between two linear transformations. It consists of a (linear
compression) → (keyed nonlinear transformation) → (linear decompression) feed back with its
input and then linearly transformed. We impose that the compression and decompression be
orthogonal linear codes for the system to be invertible even if the nonlinear part is not invertible.
Our scheme has the practical advantage that many interesting properties of an entire round
reduce only to those of the nonlinear transformation. As a matter of fact, we prove a lower bound
on the minimal number of iterations, assuming independent keys uniformly distributed among
iterations, to avoid path both in the space of first order differences (differential cryptanalysis) and
in the space of linear first order correlations (linear cryptanalysis) up to a desired threshold. We
neither focus in this paper on the key scheduling algorithm nor on the nonlinear part and solely
analyse how the linear components must be set up to be resilient against the aforementioned
cryptanalytic attacks. We also show that round functions of well-known block ciphers such as
DES or IDEA, family of block ciphers such as Feistel networks (and some generalized Feistel
networks that are built over fields of characteristic two), or symmetric cryptographic scheme
such as the Massey-Lai scheme for instance are all specific cases of our transformation.

More precisely, let n > 0, N ≥ Ni > 0, and N ≥ No > 0 be integers, V = Fn
2 , and consider

the vectorial function F : V N → V N , introduced for the first time in this paper, given by

Fk(x) = T
(
x+B

(
fk
(
A(x)

)))
, (1)

where k ∈ K and K is a vector space over F2 (the keyspace with dimK ≥ Nn), fk : V Ni 7→ V No

is a vectorial nonlinear function, T is an invertible matrix of size N ×N over V , A is a full rank
matrix of size Ni ×N over V , and B is a full random matrix of size No ×N over V such that
ABt = 0. We refer to n as the word size, N as the number of words, Ni as the number of input
words to fk, No as the number of output words to fk, N

Ni
∈ Q as the compression/contraction

factor, and N
No
∈ Q as the decompression/expansion factor.

Theorem 1. For all k ∈ K, the function Fk is invertible even if fk is not invertible and so
is any composition of Fk’s.

Theorem 2. Both the differential and linear cryptanalyses of Fk solely reduces to those of
fk for all k no matter the input x ∈ V N .

Let F = Fk` · · ·Fk1 be a composition of ` functions Fki with independently identically dis-
tributed keys ki over K, δ be the maximal differential uniformity over all fk, λ be the maximal
linear correlation (Walsh coefficient) over all fk, and `? = max{ N

Ni
, N
No
}.

Theorem 3. Both the differential uniformity and maximal correlation (Walsh coefficient)
of F is not larger δ`

?
and λ`

?
, respectively, whenever ` > `?.



References

[1] Biham, Eli and Shamir, Adi. Differential cryptanalysis of DES-like cryptosystems. Journal
of Cryptology, 4(1):3–72, 1991.

[2] Carlet, Claude. Boolean functions for cryptography and error correcting codes. In Boolean
Models and Methods in Mathematics, Computer Science, and Engineering, pages 257–397.
Cambridge University Press, 2010.

[3] Carlet, Claude. Vectorial boolean functions for cryptography. In Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pages 398–469. Cambridge
University Press, 2010.

[4] Gravel, Claude, Panario, Daniel and Thomson, David. Unicyclic strong permutations, 2018.
https://arxiv.org/abs/1809.03551.

[5] Heys, Howard M. A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3):189–
221, 2002.

[6] Lai, Xuejia and Massey, James L. A Proposal for a New Block Encryption Standard. In
Advances in Cryptology, EUROCRYPT ’90, pages 389–404. Springer-Verlag, 1991.

[7] Lidl, Rudolf and Niederreiter, Harold. Finite Fields. Cambridge University Press, 1997.

[8] Xiao, Guo-Zhen and Massey, James L.. A spectral characterization of correlation-immune
combining functions. IEEE Trans. Information Theory, 34(3):569–571, 1988.

[9] Matsui, Mitsuru. Linear cryptanalysis method for DES cipher. In Advances in Cryptology
— EUROCRYPT ’93, pages 386–397. Springer-Verlag, 1994.

[10] Mullen, Gary L. and Panario, Daniel. Handbook of Finite Fields. Chapman & Hall/CRC,
2013.

[11] Nyberg, Kaisa. Statistical and linear independence of binary random variables. Technical
report, 2017. https://eprint.iacr.org/2017/432.

[12] Siegenthaler, T. Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE Trans. Info. Th., 30:776–780, 1984.

[13] Junod, Pascal and Vaudenay, Serge. FOX Specifications Version 1.2, 2005.


