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The talk is devoted to the problem of investigating metrically regular subsets of the Boolean
cube. Let us recall some definitions. Given a subset X ⊆ Fn

2 of the Boolean cube, its metric

complement X̂ is a set of all binary vectors which are at the maximal possible distance from the

set X. Then, if the set
̂̂
X coincides with X, the set X is called metrically regular.

The problem of studying metrically regular sets was first posed in [1] when studying bent
functions. A Boolean function f in even number of variables is called bent function, if it is at
the maximal possible distance from the set of affine functions. Thus, the set of bent functions
Bn is the metric complement of the set of affine functions An. It is known that the set of affine
functions is also the metric complement of the set of bent functions and therefore both sets are
metrically regular.

Metric complements and metrically regular sets have been actively studied by the author.
Particularly, in paper [3], metric complements to linear subspaces (linear codes) of the Boolean
cube are studied, while paper [4] deals with metrically regular sets of maximal and minimal
cardinality. Several metrically regular classes of Boolean functions are also studied in [2].

In this work, metric regularity of different classes of commonly used codes (both linear and
non-linear) is investigated. In particular, metric regularity of certain Reed-Muller codes has
been proven (as was mentioned above, Tokareva proved that codes RM(1, n) (affine functions)
are metrically regular for even n). It is also conjectured that any Reed-Muller code RM(r, n) is
metrically regular.
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