Differential Spectra of Power Permutations

Daniel J. Katz (joint work with Kyle Pacheco and Yakov Sapozhnikov)

If F is a finite field and d is a positive integer relatively prime to $|F^{\times}|$, then the power map $x \mapsto x^{d}$ is a permutation of F, and so is called a *power permutation of* F. For any function $f: F \to F$, and $a, b \in F$, we define the *differential multiplicity of* f with respect to a and b, written $\delta_{f}(a, b)$, to be the number of pairs $(x, y) \in F^{2}$ with x - y = a and f(x) - f(y) = b. We usually insist that $a \neq 0$, since it is immediate that $\delta_{f}(0,0) = |F|$ and $\delta_{f}(0,b) = 0$ for $b \neq 0$. The differential spectrum of f, written Δ_{f} , is defined as $\Delta_{f} = \{\delta_{f}(a, b) : a \in F^{\times}, b \in F\}$. Differential spectra of power permutations are of interest in applications to cryptography and digital communications. We are especially interested in fields F and exponents d such $f(x) = x^{d}$ is a power permutation over F whose differential spectrum contains at most three values. We present computational experiments that suggest conjectures as to which (F, d) pairs produce such spectra.