
List of APN polynomials

In the following we report the list of quadratics APN polynomials which are inequivalent to power
functions and that can produce APN functions inequivalent to each other.

Table 1: Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to power functions

N◦ Functions Conditions Proven

n = pk, gcd(k,3)=gcd(s,3k)=1,
C1-C2 x2s+1 +u2k−1x2ik+2mk+s

p ∈ {3,4}, i = sk mod p, m = p− i, [6]
n≥ 12, u primitive in F∗2n

q = 2m, n = 2m, gcd(i,m)=1,
C3 sxq+1 + x2i+1 + xq(2i+1) c ∈ F2n , s ∈ F2n \Fq, [5]

+cx2iq+1 + cqx2i+q X2i+1 + cX2i
+ cqX +1

has no solution x s.t. xq+1 = 1

C4 x3 +a−1Trn(a3x9) a 6= 0 [7]

C5 x3 +a−1Tr3
n(a

3x9 +a6x18) 3|n, a 6= 0 [8]

C6 x3 +a−1Tr3
n(a

6x18 +a12x36) 3|n, a 6= 0 [8]

n = 3k, gcd(k,3)=gcd(s,3k)=1,
C7-C9 ux2s+1 +u2k

x2−k+2k+s
+ v,w ∈ F2k , vw 6= 1, [2]

vx2−k+1 +wu2k+1x2s+2k+s
3|(k+ s) u primitive in F∗2n

(x+ x2m
)2k+1+ n = 2m, m≥ 2 even,

C10 u′(ux+u2m
x2m

)(2
k+1)2i

+ gcd(k,m) = 1 and i≥ 2 even [11]
u(x+ x2m

)(ux+u2m
x2m

) u primitive in F∗2n , u′ ∈ F2m not a cube

a2x22m+1+1 +b2x2m+1+1 +ax22m+2 n = 3m, m odd
C11 +bx2m+2 +(c2 + c)x3 L(x) = ax22m

+bx2m
+ cx satisfies [3]

the conditions in Lemma 8 of [3]

• For n odd all these families are AB. However, only the functions of the family C1, with n odd, are
provably permutations. In particular, this implies that these binomials and the Gold AB monomials
are the only two known crooked functions.

• In [10] the author introduced the APN trinomials x2k+1+ trn
m(x)

2k+1 with n = 2m = 4t, gcd(k,n) =
1. Here trn

m denotes the trace function from F2n to F2m . It was conjectured that this family was
inequivalent to power functions, but in [9] it is shown that such a function is affine equivalent to
the Gold function x2m−k+1.

• The family of APN multinomials from [1] is contained in the family C4 (see [4]).

• The family of APN trinomials from [5] is contained in the family C4 (see [4]).
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