Functions	Exponents d	Conditions	$d^{\circ}(x^d)$	Proven
Gold	$2^{i} + 1$	gcd(i,n) = 1	2	[5, 8]
Kasami	$2^{2i} - 2^i + 1$	gcd(i,n) = 1	i+1	[6, 7]
Welch	$2^t + 3$	n = 2t + 1	3	[4]
Niho	$2^t + 2^{\frac{t}{2}} - 1, t \text{ even}$	n = 2t + 1	(t+2)/2	[3]
	$2^t + 2^{\frac{3t+1}{2}} - 1, t \text{ odd}$		t+1	
Inverse	$2^{2t} - 1$	n = 2t + 1	n-1	[1, 8]
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5i	i+3	[2]

Known Infinite Families of APN power functions x^d on \mathbb{F}_{2^n}

References

- [1] Thomas Beth and Cunsheng Ding. On almost perfect nonlinear permutations. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 65–76. Springer, 1993.
- [2] H Dobbertin. Almost perfect nonlinear power functions over gf (2; sup¿ n;/sup¿): a new case for n divisible by 5. In proceedings of: The fifth Conference on Finite Fields and Applications FQ5, pages 113–121.
- [3] Hans Dobbertin. Almost perfect nonlinear power functions on gf (2n): the niho case. Information and Computation, 151(1-2):57-72, 1999.
- [4] Hans Dobbertin. Almost perfect nonlinear power functions on $gf(2^n)$: the welch case. *IEEE Transactions on Information Theory*, 45(4):1271–1275, 1999.
- [5] Robert Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.). *IEEE transactions on Information Theory*, 14(1):154–156, 1968.
- [6] Heeralal Janwa and Richard M Wilson. Hyperplane sections of fermat varieties in p3 in char. 2 and some applications to cyclic codes. In *International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes*, pages 180–194. Springer, 1993.
- [7] Tadao Kasami. The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes. *Information and Control*, 18(4):369–394, 1971.
- [8] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 55–64. Springer, 1993.