
Generalized Bent Functions

n d or F (x) a d◦ Remarks

2 a 6= 0 2 r, wr

2k pk + 1 a + apk
6= 0 2 wr

pj + 1, n
gcd(n,j) -odd a 6= 0 2 r, wr

pj + 1 Some condition on a 2 r, wr

3k+1
2 , gcd(k, n) = 1, k-odd a 6= 0 k + 1 r, wr

2k t(3k − 1), gcd(t, 3k + 1) = 1 K(apk+1) = 0 n ternary r

2k 3n−1
4 + 3k + 1, k-odd ξ

3k+1
4 n ternary wr

4k xp3k+p2k−pk+1 + x2 (p− 1)k + 2 wr

The table lists the known univariate polynomials giving infinite classes of p-ary bent functions.
Here ξ is a primitive element of F3n and the

Here ξ is a primitive element of F3n , “r” indicates a regular and “wr” indicates a weakly regular
bent function. By K(a) we denote the Kloosterman sum

K(a) =
∑
x∈Fpn

wtrn(x+ax−1)

where w is a complex p-th primitive root of unity.
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