N°	Functions*	n = 6	n = 7	n = 8	n = 9	n = 10	n = 11
1	$x^{2^{s}+1} + u^{2^{k}-1}x^{2^{ik}+2^{mk+s}},$ p = 3	Gold	_	_	_	_	_
2	$p = 3$ $x^{2^{s}+1} + u^{2^{k}-1} x^{2^{ik}+2^{mk+s}},$ $p = 4$	_	_	_	_	_	_
3	$x^{2^{2i}+2^{i}} + bx^{q+1} + cx^{q(2^{2i}+2^{i})}$	New	_	_	_	New I $(i = 1, c = u^{31}, b = 1)$ New II $(i = 3, , c = u^{31}, b = 1)$ N°3: Case I	_
4	$x(x^{2^{i}} + x^{q} + cx^{2^{i}q}) +x^{2^{i}}(c^{q}x^{q} + sx^{2^{i}q}) + x^{(2^{i}+1)q}$	$N^{\circ}3$	-	New	_	$(i = 1, c = u^3, s = u)$ $N^\circ 3$: Case II $(i = 3, c = u^3, s = w)$	_
5	$x^3 + a^{-1} \operatorname{tr}_n(a^3 x^9)$	$Gold (a = 1) N^{\circ}3 (a = u)$	New	New I (a = 1) New II (a = u)	New	New I (a = 1) New II (a = u)	New
6	$x^3 + a^{-1} \operatorname{tr}_n^3 (a^3 x^9 + a^6 x^{18})$	$ \begin{array}{c} \text{Gold} \\ (a=1) \\ N^{\circ}3 \\ (a=u) \end{array} $	_	_	New	_	_
7	$x^3 + a^{-1} \operatorname{tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$Gold (a = 1) N^{\circ}3 (a = u)$	_	_	New	_	_
8	$\begin{array}{c} ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + \\ vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}, \\ v = 0, w \neq 0 \\ ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + \end{array}$	New	_	_	_	_	_
9	$vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}},$	$N^{\circ}8$	_	_	_	-	_
10	$\begin{array}{c} v \neq 0, w = 0 \\ ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + \\ vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}, \\ v \neq 0, w \neq 0 \end{array}$	$N^{\circ}8$	_	_	_	_	_
11	$\begin{array}{c} v \neq 0, w \neq 0 \\ (x + x^{2^m})^{2^k + 1} + \\ u^{(2^n - 1)/(2^m - 1)}(ux + u^{2^m}x^{2^m})^{(2^k + 1)2^i} + \\ u(x + x^{2^m})(ux + u^{2^m}x^{2^m}) \\ & *: \text{ For the conditions for each family} \end{array}$	_	_	$New (i = 2) N^{\circ}4 (i = 0)$	_	_	_

Table 1: CCZ-equivalences of Families of APN Polynomials over \mathbb{F}_{2^n} from table 2 (6 $\leq n \leq 11, u$ is primitive in $\mathbb{F}_{2^n}^*$)

* : For the conditions for each family, please reference table 2; – : Doesn't exist; New : CCZ-inequivalent with other infinite families.

No.	Functions	Conditions
		$n = pk, \operatorname{gcd}(k, 3) = \operatorname{gcd}(s, 3k) = 1,$
1-2 [3]	$x^{2^{s}+1} + u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}$	$p \in \{3, 4\}, i = sk \mod p, m = p - i,$
		$n \ge 12$
		$q = 2^m, n = 2m, \operatorname{gcd}(i, m) = 1,$
3 [2]	$x^{2^{2i}+2^{i}} + bx^{q+1} + cx^{q(2^{2i}+2^{i})}$	$gcd(2^{i}+1, q+1) \neq 1, cb^{q}+b \neq 0,$
		$c \notin \{\lambda^{(2^{i}+1)(q-1)}, \lambda \in \mathbb{F}_{2^{n}}\}, c^{q+1} = 1$
		$q = 2^m, n = 2m, \gcd(i, m) = 1,$
4 [2]	$x(x^{2^i} + x^q + cx^{2^i q})$	$c\in \mathbb{F}_{2^n}, s\in \mathbb{F}_{2^n}\backslash \mathbb{F}_q,$
	$+x^{2^{i}}(c^{q}x^{q}+sx^{2^{i}q})+x^{(2^{i}+1)q}$	$X^{2^{i}+1} + cX^{2^{i}} + c^{q}X + 1$
		is irreducible over \mathbb{F}_{2^n}
5 [4, 5]	$x^3 + a^{-1} \mathrm{tr}_n(a^3 x^9)$	a eq 0
6 [5]	$x^3 + a^{-1} \mathrm{tr}_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
7 [5]	$x^3 + a^{-1} \mathrm{tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$
		$n = 3k, \operatorname{gcd}(k, 3) = \operatorname{gcd}(s, 3k) = 1,$
8-10 [1]	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} +$	$v,w\in \mathbb{F}_{2^k}, vw\neq 1,$
	$vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	3 (k+s)
	$(x + x^{2^m})^{2^k + 1} +$	$m \ge 2, 2 m, n = 2m,$
11 [6]	$u^{(2^n-1)/(2^m-1)}(ux+u^{2^m}x^{2^m})^{(2^k+1)2^i}+$	gcd(k,m) = 1, i is even
	$u(x+x^{2^{m}})(ux+u^{2^{m}}x^{2^{m}})$	

Table 2: Known classes of quadratic APN polynomials CCZ-inequivalent to APN monomials over \mathbb{F}_{2^n} (*u* is primitive in $\mathbb{F}_{2^n}^*$)

References

- Carl Bracken, Eimear Byrne, Nadya Markin, and Gary Mcguire. New families of quadratic almost perfect nonlinear trinomials and multinomials. *Finite Fields and Their Applications*, 14(3):703-714, 2008.
- [2] Lilya Budaghyan and Claude Carlet. Classes of quadratic app trinomials and hexanomials and related structures. *IEEE Transactions on Information Theory*, 54(5):2354–2357, 2008.
- [3] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two classes of quadratic apn binomials inequivalent to power functions. *IEEE Transactions on Information Theory*, 54(9):4218–4229, 2008.

- [4] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new apn functions from known ones. *Finite Fields and Their Applications*, 15(2):150–159, 2009.
- [5] Lilya Budaghyan, Claude Carlet, and Gregor Leander. On a construction of quadratic apn functions. In *Information Theory Workshop*, 2009. ITW 2009. IEEE, pages 374–378. IEEE, 2009.
- [6] Yue Zhou and Alexander Pott. A new family of semifields with 2 parameters. Advances in Mathematics, 234:43–60, 2013.