Table 1: CCZ-equivalences of Families of APN Polynomials over $\mathbb{F}_{2^{n}}$ from table $2(6 \leq n \leq 11, u$ is primitive in $\mathbb{F}_{2^{n}}^{*}$)

N°	Functions*	$n=6$	$n=7$	$n=8$	$n=9$	$n=10$	$n=11$
1	$\begin{gathered} x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}, \\ p=3 \end{gathered}$	Gold	-	-	-	-	-
2	$\begin{gathered} x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}} \\ p=4 \\ \hline \end{gathered}$	-	-	-	-	$-^{-}$	-
3	$x^{2^{2 i}+2^{i}}+b x^{q+1}+c x^{q\left(2^{2 i}+2^{i}\right)}$	New	-	-	-	$\begin{gathered} \text { New I } \\ \left(i=1, c=u^{31}, b=1\right) \\ \text { New II } \\ \left(i=3, c=u^{31}, b=1\right) \end{gathered}$	-
4	$\begin{gathered} x\left(x^{2^{i}}+x^{q}+c x^{2^{i} q}\right) \\ +x^{2^{i}}\left(c^{q} x^{q}+s x^{2^{i} q}\right)+x^{\left(2^{i}+1\right) q} \end{gathered}$	$N^{\circ} 3$	-	New	-	$\begin{gathered} N^{\circ} 3: \text { Case I } \\ \left(i=1, c=u^{3}, s=u\right) \\ N^{\circ} 3: \text { Case II } \\ \left(i=3, c=u^{3}, s=w\right) \end{gathered}$	-
5	$x^{3}+a^{-1} \operatorname{tr}_{n}\left(a^{3} x^{9}\right)$	$\begin{gathered} \text { Gold } \\ (a=1) \\ N^{\circ} 3 \\ (a=u) \\ \hline \end{gathered}$	New	$\begin{aligned} & \hline \text { New I } \\ & (a=1) \\ & \text { New II } \\ & (a=u) \end{aligned}$	New	$\begin{gathered} \text { New I } \\ (a=1) \\ \text { New II } \\ (a=u) \\ \hline \end{gathered}$	New
6	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$\begin{gathered} \text { Gold } \\ (a=1) \\ N^{\circ} 3 \\ (a=u) \end{gathered}$	-	-	New	-	-
7	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$\begin{gathered} \text { Gold } \\ (a=1) \\ N^{\circ} 3 \\ (a=u) \end{gathered}$	-	-	New	-	-
8	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}+} \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}}, \\ v=0, w \neq 0 \end{gathered}$	New	-	-	-	-	-
9	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}+} \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}}, \\ v \neq 0, w=0 \end{gathered}$	$N^{\circ} 8$	-	-	-	-	-
10	$\begin{aligned} u x^{2^{s}+1} & +u^{2^{k}} x^{2^{-k}+2^{k+s}+} \\ v x^{2^{-k}+1} & +w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \\ v & \neq 0, w \neq 0 \end{aligned}$	$N^{\circ} 8$	-	-	-	-	-
11	$\begin{gathered} \left(x+x^{2^{m}}\right)^{2^{k}+1}+ \\ u^{\left(2^{n}-1\right) /\left(2^{m}-1\right)}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{k}+1\right) 2^{i}}+ \\ u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right) \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { New } \\ (i=2) \\ N^{\circ} 4 \\ (i=0) \\ \hline \end{gathered}$	-	-	-

*: For the conditions for each family, please reference table 2 ;

- : Doesn't exist;

New: CCZ-inequivalent with other infinite families.

Table 2: Known classes of quadratic APN polynomials CCZ-inequivalent to APN monomials over $\mathbb{F}_{2^{n}}\left(u\right.$ is primitive in $\left.\mathbb{F}_{2^{n}}^{*}\right)$

No.	Functions	Conditions
$\begin{aligned} & 1-2 \\ & {[3]} \end{aligned}$	$x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}$	$\begin{gathered} n=p k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ p \in\{3,4\}, i=s k \bmod p, m=p-i, \\ n \geq 12 \end{gathered}$
$\begin{gathered} 3 \\ {[2]} \end{gathered}$	$x^{2^{2 i}+2^{i}}+b x^{q+1}+c x^{q\left(2^{2 i}+2^{i}\right)}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1, \\ \operatorname{gcd}\left(2^{i}+1, q+1\right) \neq 1, c b^{q}+b \neq 0, \\ c \notin\left\{\lambda^{\left(2^{i}+1\right)(q-1)}, \lambda \in \mathbb{F}_{2^{n}}\right\}, c^{q+1}=1 \end{gathered}$
$\begin{gathered} 4 \\ {[2]} \end{gathered}$	$\begin{gathered} x\left(x^{2^{i}}+x^{q}+c x^{2^{i} q}\right) \\ +x^{2^{i}}\left(c^{q} x^{q}+s x^{2^{i} q}\right)+x^{\left(2^{i}+1\right) q} \end{gathered}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1, \\ c \in \mathbb{F}_{2^{n}, s \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{q},} \\ X^{2^{i}+1}+c X^{2^{i}}+c^{q} X+1 \end{gathered}$ is irreducible over $\mathbb{F}_{2} n$
$\begin{gathered} 5 \\ {[4,5]} \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}\left(a^{3} x^{9}\right)$	$a \neq 0$
$\begin{gathered} \hline 6 \\ {[5]} \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$
$\begin{gathered} \hline 7 \\ {[5]} \\ \hline \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$
$\begin{gathered} 8-10 \\ {[1]} \end{gathered}$	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}+} \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \end{gathered}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ v, w \in \mathbb{F}_{2^{k}}, v w \neq 1, \\ 3 \mid(k+s) \end{gathered}$
$\begin{aligned} & 11 \\ & {[6]} \end{aligned}$	$\begin{gathered} \left(x+x^{2^{m}}\right)^{2^{k}+1}+ \\ u^{\left(2^{n}-1\right) /\left(2^{m}-1\right)}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{k}+1\right) 2^{i}}+ \\ u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right) \end{gathered}$	$\begin{gathered} m \geq 2,2 \mid m, n=2 m, \\ \operatorname{gcd}(k, m)=1, i \text { is even } \end{gathered}$

References

[1] Carl Bracken, Eimear Byrne, Nadya Markin, and Gary Mcguire. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications, 14(3):703-714, 2008.
[2] Lilya Budaghyan and Claude Carlet. Classes of quadratic apn trinomials and hexanomials and related structures. IEEE Transactions on Information Theory, 54(5):2354-2357, 2008.
[3] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two classes of quadratic apn binomials inequivalent to power functions. IEEE Transactions on Information Theory, 54(9):4218-4229, 2008.
[4] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new apn functions from known ones. Finite Fields and Their Applications, 15(2):150-159, 2009.
[5] Lilya Budaghyan, Claude Carlet, and Gregor Leander. On a construction of quadratic apn functions. In Information Theory Workshop, 2009. ITW 2009. IEEE, pages 374-378. IEEE, 2009.
[6] Yue Zhou and Alexander Pott. A new family of semifields with 2 parameters. Advances in Mathematics, 234:43-60, 2013.

