The Walsh Spectra of some Functions (under the assumption $F(0)=0$)

Condition	Functions	Walsh Coefficient	Frequency	Ref.
$m \leqslant n / 2$	bent	$2^{\frac{\pi}{2}}$	$2^{n-1}+2^{\frac{n}{2}-1}$	[2]
		$-2^{\frac{n}{2}}$	$2^{n-1}-2^{\frac{n}{2}-1}$	
$m=n$, n is odd	AB	0	$2^{n}-2^{n-1}$	$\begin{aligned} & {[2]} \\ & {[4]} \end{aligned}$
		$2^{\frac{n+1}{2}}$	$2^{n-3}+2^{\frac{n-3}{2}}$	
		$-2^{\frac{n+1}{2}}$	$2^{n-3}+2^{\frac{n-3}{2}}$	
	$\begin{aligned} & \text { Inverse } \\ & (n \neq 3) \end{aligned}$	Any value divisible by 4 in $\left[-2^{\frac{n}{2}+1}+1,2^{\frac{n}{2}+1}+1\right]$	unknown	[3]
	Dobbertin	Divisible $2^{\frac{\pi}{5}}$, NOT divisible by $2^{\frac{2 n}{5}+1}$	unknown	[1]
$m=n$ n is even	Gold	0	$\left(2^{n}-1\right)\left(2^{n-2}+1\right)$	[5]
		$2^{\frac{\pi}{2}}$	$\frac{1}{3}\left(2^{n}-1\right)\left(2^{n}+2^{\frac{\pi}{2}}\right)$	
		$-2^{\frac{n}{2}}$	$\frac{1}{3}\left(2^{n}-1\right)\left(2^{n}-2^{\frac{n}{2}}\right)$	
		$2^{\frac{n+2}{2}}$	$\frac{1}{12}\left(2^{n}-1\right)\left(2^{n-1}+2^{\frac{n}{2}}\right)$	
		$-2^{\frac{n+2}{2}}$	$\frac{1}{12}\left(2^{n}-1\right)\left(2^{n-1}-2^{\frac{n}{2}}\right)$	
	Dobbertin	Same as n is odd	unknown	[1]

References

[1] Anne Canteaut, Pascale Charpin, and Hans Dobbertin. Binary m-sequences with three-valued crosscorrelation: a proof of welch's conjecture. IEEE Transactions on Information Theory, 46(1):4-8, 2000.
[2] Anne Canteaut, Pascale Charpin, and Gohar M Kyureghyan. A new class of monomial bent functions. Finite Fields and Their Applications, 14(1):221-241, 2008.
[3] Claude Carlet. Vectorial boolean functions for cryptography. Boolean models and methods in mathematics, computer science, and engineering, 134:398-469, 2010.
[4] Robert Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.). IEEE transactions on Information Theory, 14(1):154-156, 1968.
[5] Tadao Kasami. Weight distributions of bose-chaudhuri-hocquenghem codes. Coordinated Science Laboratory Report no. R-317, 1966.

