Condition	Functions	Walsh Coefficient	Frequency	Ref.
$m\leqslant n/2$	bent	$2^{\frac{n}{2}}$	$2^{n-1} + 2^{\frac{n}{2}-1}$	[2]
		$-2^{\frac{n}{2}}$	$2^{n-1} - 2^{\frac{n}{2}-1}$	
m = n, n is odd	AB	0	$2^n - 2^{n-1}$	[2] [4]
		$2^{\frac{n+1}{2}}$	$2^{n-3} + 2^{\frac{n-3}{2}}$	
		$-2^{\frac{n+1}{2}}$	$2^{n-3} + 2^{\frac{n-3}{2}}$	
	Inverse	Any value divisible by 4 in	unknown	[3]
	$(n\neq 3$)	$\left[-2^{\frac{n}{2}+1}+1,2^{\frac{n}{2}+1}+1\right]$		
	Dobbertin	Divisible $2^{\frac{n}{5}}$,	unknown	[1]
		NOT divisible by $2^{\frac{2n}{5}+1}$		
m = n, n is even	Gold	0	$(2^n - 1)(2^{n-2} + 1)$	[5]
		$2^{\frac{n}{2}}$	$\frac{1}{3}(2^n-1)(2^n+2^{\frac{n}{2}})$	
		$-2^{\frac{n}{2}}$	$\frac{1}{3}(2^n-1)(2^n-2^{\frac{n}{2}})$	
		$2^{\frac{n+2}{2}}$	$\frac{1}{12}(2^n-1)(2^{n-1}+2^{\frac{n}{2}})$	
		$-2^{\frac{n+2}{2}}$	$\frac{1}{12}(2^n-1)(2^{n-1}-2^{\frac{n}{2}})$	
	Dobbertin	Same as n is odd	unknown	[1]

The Walsh Spectra of some Functions (under the assumption F(0) = 0)

References

- Anne Canteaut, Pascale Charpin, and Hans Dobbertin. Binary m-sequences with three-valued crosscorrelation: a proof of welch's conjecture. *IEEE Transactions on Information Theory*, 46(1):4–8, 2000.
- [2] Anne Canteaut, Pascale Charpin, and Gohar M Kyureghyan. A new class of monomial bent functions. *Finite Fields and Their Applications*, 14(1):221–241, 2008.
- [3] Claude Carlet. Vectorial boolean functions for cryptography. Boolean models and methods in mathematics, computer science, and engineering, 134:398–469, 2010.
- [4] Robert Gold. Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.). *IEEE transactions on Information Theory*, 14(1):154–156, 1968.
- [5] Tadao Kasami. Weight distributions of bose-chaudhuri-hocquenghem codes. Coordinated Science Laboratory Report no. R-317, 1966.