Some APN functions CCZ-equivalent to $x^3 + tr_n(x^9)$ and CCZ-inequivalent to the Gold functions over \mathbb{F}_{2^n} (constructed in [1]).

N^{\cdot}	Functions	Conditions	d°
		$n \ge 5$ odd	
1	$x^3 + {\rm tr}_n(x^9) + (x^2 + x) {\rm tr}_n(x^3 + x^9)$	gcd(i, n) = 1	3
		$n \geq 4$ even	
2	$x^{3} + \operatorname{tr}_{n}(x^{9}) + (x^{2} + x + 1)\operatorname{tr}_{n}(x^{3})$	gcd(i, n) = 1	3
		6 n	
3	$ \left(x + \operatorname{tr}_n^3 (x^6 + x^{12}) + \operatorname{tr}_n (x) \operatorname{tr}_n^3 (x^3 + x^{12}) \right)^3 + \operatorname{tr}_n \left(\left(x + \operatorname{tr}_n^3 (x^6 + x^{12}) + \operatorname{tr}_n (x) \operatorname{tr}_n^3 (x^3 + x^{12}) \right)^9 \right) $	$\gcd(i,n) = 1$	4
		3 n	
4	$\left(x^{\frac{1}{3}} + \operatorname{tr}_{n}^{3}(x + x^{4})\right)^{-1} + \operatorname{tr}_{n}\left(\left(\left(x^{\frac{1}{3}} + \operatorname{tr}_{n}^{3}(x + x^{4})\right)^{-1}\right)^{9}\right)\right)$	n odd	4

References

 Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new apn functions from known ones. *Finite Fields and Their Applications*, 15(2):150–159, 2009.