Table 1: Classification of Quadratic APN Trinomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	-	-	-
7	7.1	$x^{20} + x^6 + x^3$	-	Table 7 : $N^{\circ}8.1$
	7.2	$x^{34} + x^{18} + x^5$	_	$7: N^{\circ}2.1$
8	8.1	$x^{72} + x^6 + x^3$	$N^{\circ}5$	Table 9 : $N^{\circ}1.3$
	8.2	$x^{72} + x^{36} + x^3$	-	$9: N^{\circ}1.4$
9	-	-	-	-
10	-	-	-	-
11	-	-	-	_

Table 2: Classification of Quadratic APN Quadrinomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	=	=	-
7	7.1	$x^{72} + x^{40} + x^{12} + x^3$	=	Table 7 : $N^{\circ}12.1$
'	7.2	$x^{33} + x^{17} + x^{12} + x^3$	=	7 : $N^{\circ}10.1$
	7.3	$x^{34} + x^{33} + x^{10} + x^3$	=	$7: N^{\circ}2.2$
	7.4	$x^{66} + x^{34} + x^{20} + x^3$	=	7 : $N^{\circ}11.1$
	7.5	$x^{68} + x^{18} + x^5 + x^3$	=	$7: N^{\circ}8.1$
	7.6	$x^{66} + x^{18} + x^9 + x^3$	=	$7: N^{\circ}9.1$
8	-	-	-	-
9	-	-	-	-
10	-	-	-	_
11	-	-	=	-

Table 3: Classification of Quadratic APN Pentanomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	_	_	-
7	7.1	$x^{68} + x^{40} + x^{24} + x^6 + x^3$	-	Table 7 : $N^{\circ}13.1$
'	7.2	$x^{65} + x^{20} + x^{18} + x^6 + x^3$	$N^{\circ}5$	$7: N^{\circ}1.2$
	7.3	$x^{40} + x^{34} + x^{18} + x^{10} + x$	=	$7: N^{\circ}12.1$
	7.4	$x^{48} + x^{40} + x^{10} + x^9 + x^3$	=	$7: N^{\circ}2.1$
	7.5	$x^{33} + x^9 + x^6 + x^5 + x^3$	=	$7: N^{\circ}11.1$
	7.6	$x^{40} + x^{36} + x^{34} + x^{24} + x^3$	_	$7: N^{\circ}10.1$
	7.7	$x^{24} + x^{10} + x^9 + x^6 + x^3$	-	$7: N^{\circ}2.2$
	7.8	$x^{65} + x^{36} + x^{20} + x^{17} + x^3$	=	$7: N^{\circ}14.1$
	7.9	$x^{40} + x^{33} + x^{17} + x^5 + x^3$	_	$7: N^{\circ}8.1$
	7.10	$x^{36} + x^{33} + x^{18} + x^9 + x^5$	_	$7: N^{\circ}10.2$
8	8.1	$x^{36} + x^{33} + x^9 + x^6 + x^3$	-	Table 9 : $N^{\circ}1.4$
	8.2	$x^{72} + x^{66} + x^{12} + x^6 + x^3$	$N^{\circ}5$	$9: N^{\circ}1.3$
	8.3	$x^{130} + x^{66} + x^{40} + x^{12} + x^3$	_	$9: N^{\circ}6.1$
	8.4	$x^{66} + x^{40} + x^{18} + x^5 + x^3$	_	$9: N^{\circ}5.1$
9	_	_	_	_
10	_	_	_	_
	11.1	$x^{12} + x^{10} + x^9 + x^5 + x^3$	-	-
	11.2	$x^{258} + x^{257} + x^{18} + x^{17} + x^3$	=	-
11	11.3	$x^{96} + x^{66} + x^{34} + x^{33} + x^3$	-	-
	11.4	$x^{80} + x^{68} + x^{65} + x^{17} + x^5$	-	-
	11.5	$x^{260} + x^{257} + x^{36} + x^{33} + x^5$	=	-

Table 4: Classification of Quadratic APN Hexanomial (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	=	-	_
7	7.1	$x^{34} + x^{33} + x^{12} + x^6 + x^5 + x^3$	-	Table 7 : $N^{\circ}14.2$
'	7.2	$x^{40} + x^{24} + x^{20} + x^9 + x^5 + x^3$	=	$7: N^{\circ}14.1$
	7.3	$x^{33} + x^{24} + x^{20} + x^{18} + x^{12} + x^3$	_	$7: N^{\circ}12.1$
	7.4	$x^{24} + x^{17} + x^{12} + x^{10} + x^6 + x^3$	_	$7: N^{\circ}2.1$
	7.5	$x^{40} + x^{34} + x^{18} + x^{17} + x^5 + x^3$	$N^{\circ}5$	$7: N^{\circ}1.2$
	7.6	$x^{48} + x^{40} + x^{18} + x^{10} + x^5 + x^3$	_	$7: N^{\circ}11.1$
	7.7	$x^{40} + x^{12} + x^{10} + x^9 + x^5 + x^3$	_	$7: N^{\circ}2.2$
	7.8	$x^{34} + x^{24} + x^{10} + x^9 + x^6 + x^3$	_	$7: N^{\circ}9.1$
	7.9	$x^{34} + x^{33} + x^{20} + x^{17} + x^{10} + x^3$	_	$7: N^{\circ}13.1$
	7.10	$x^{36} + x^{33} + x^{24} + x^9 + x^6 + x^3$	_	$7: N^{\circ}10.1$
	7.11	$x^{40} + x^{36} + x^{20} + x^{10} + x^5 + x^3$	_	$7: N^{\circ}10.2$
	7.12	$x^{36} + x^{34} + x^{20} + x^{10} + x^9 + x^3$	_	$7: N^{\circ}8.1$
8	8.1	$x^{68} + x^{34} + x^{17} + x^{12} + x^9 + x^3$	_	Table 9 : $N^{\circ}5.1$
0	8.2	$x^{72} + x^{40} + x^{34} + x^{20} + x^{12} + x^3$	$N^{\circ}5$	$9: N^{\circ}6.1$
	8.3	$x^{72} + x^{66} + x^{34} + x^{18} + x^{10} + x^{5}$	_	$9: N^{\circ}4.1$
9	-	_	_	_
10	-	-	-	_
11	_	-	-	-

Table 5: Known classes of quadratic APN polynomials CCZ-inequivalent to APN monomials on \mathbb{F}_{2^n} (u is primitive in $\mathbb{F}_{2^n}^*$)

No.	Functions	Conditions
1-2 [3]	$x^{2^s+1} + u^{2^k-1}x^{2^{ik}+2^{mk+s}}$	$n = pk$, $gcd(k, 3) = gcd(s, 3k) = 1$, $p \in \{3, 4\}, i = sk \mod p, m = p - i$, $n \ge 12$
3 [2]	$x^{2^{2i}+2^i} + bx^{q+1} + cx^{q(2^{2i}+2^i)}$	$q = 2^{m}, n = 2m, \gcd(i, m) = 1,$ $\gcd(2^{i} + 1, q + 1) \neq 1, cb^{q} + b \neq 0,$ $c \notin \{\lambda^{(2^{i} + 1)(q - 1)}, \lambda \in \mathbb{F}_{2^{n}}\}, c^{q + 1} = 1$
4 [2]	$x(x^{2^{i}} + x^{q} + cx^{2^{i}q})$ $+x^{2^{i}}(c^{q}x^{q} + sx^{2^{i}q}) + x^{(2^{i}+1)q}$	$q=2^m, n=2m, \gcd(i,m)=1,$ $c\in \mathbb{F}_{2^n}, s\in \mathbb{F}_{2^n}\backslash \mathbb{F}_q,$ $X^{2^i+1}+cX^{2^i}+c^qX+1$ is irreducible over \mathbb{F}_{2^n}
5 [4, 5]	$x^3 + a^{-1} \operatorname{tr}_n(a^3 x^9)$	$a \neq 0$
6 [5]	$x^3 + a^{-1} \operatorname{tr}_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$
7 [5]	$x^3 + a^{-1} \operatorname{tr}_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$
8-10 [1]	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + $ $vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$n=3k, \gcd(k,3)=\gcd(s,3k)=1,$ $v,w\in\mathbb{F}_{2^k},vw\neq 1,$ $3 (k+s)$
11 [7]	$(x+x^{2^m})^{2^k+1}+$ $u^{(2^n-1)/(2^m-1)}(ux+u^{2^m}x^{2^m})^{(2^k+1)2^i}+$ $u(x+x^{2^m})(ux+u^{2^m}x^{2^m})$	$m \geq 2, \ 2 m, \ n = 2m,$ $\gcd(k, m) = 1, \ i \ \text{is even}$

References

- [1] Carl Bracken, Eimear Byrne, Nadya Markin, and Gary Mcguire. New families of quadratic almost perfect nonlinear trinomials and multinomials. *Finite Fields and Their Applications*, 14(3):703–714, 2008.
- [2] Lilya Budaghyan and Claude Carlet. Classes of quadratic apn trinomials and hexanomials and related structures. *IEEE Transactions on Information Theory*, 54(5):2354–2357, 2008.
- [3] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two classes of quadratic apn binomials inequivalent to power functions. *IEEE Transactions on Information Theory*, 54(9):4218–4229, 2008.
- [4] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new apn functions from known ones. Finite Fields and Their Applications, 15(2):150–159, 2009.
- [5] Lilya Budaghyan, Claude Carlet, and Gregor Leander. On a construction of quadratic apn functions. In *Information Theory Workshop*, 2009. ITW 2009. IEEE, pages 374–378. IEEE, 2009.
- [6] Yves Edel and Alexander Pott. A new almost perfect nonlinear function which is not quadratic. *Adv. in Math. of Comm.*, 3(1):59–81, 2009.
- [7] Yue Zhou and Alexander Pott. A new family of semifields with 2 parameters. Advances in Mathematics, 234:43–60, 2013.