Table 1: Classification of Quadratic APN Trinomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	-	-	-
7	7.1	$x^{20}+x^{6}+x^{3}$	-	Table $7: N^{\circ} 8.1$
	7.2	$x^{34}+x^{18}+x^{5}$	-	$7: N^{\circ} 2.1$
8	8.1	$x^{72}+x^{6}+x^{3}$	$N^{\circ} 5$	Table $9: N^{\circ} 1.3$
	8.2	$x^{72}+x^{36}+x^{3}$	-	$9: N^{\circ} 1.4$
9	-	-	-	-
10	-	-	-	-
11	-	-	-	-

Table 2: Classification of Quadratic APN Quadrinomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	-	-	-
7	7.1	$x^{72}+x^{40}+x^{12}+x^{3}$	-	Table $7: N^{\circ} 12.1$
	7.2	$x^{33}+x^{17}+x^{12}+x^{3}$	-	$7: N^{\circ} 10.1$
	7.3	$x^{34}+x^{33}+x^{10}+x^{3}$	-	$7: N^{\circ} 2.2$
	7.4	$x^{66}+x^{34}+x^{20}+x^{3}$	-	$7: N^{\circ} 11.1$
	7.5	$x^{68}+x^{18}+x^{5}+x^{3}$	-	$7: N^{\circ} 8.1$
	7.6	$x^{66}+x^{18}+x^{9}+x^{3}$	-	$7: N^{\circ} 9.1$
8	-	-	-	-
9	-	-	-	-
10	-	-	-	-
11	-	-	-	-

Table 3: Classification of Quadratic APN Pentanomials (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to $[6]$
6	-	-	-	-
7	7.1	$x^{68}+x^{40}+x^{24}+x^{6}+x^{3}$	-	Table $7: N^{\circ} 13.1$
	7.2	$x^{65}+x^{20}+x^{18}+x^{6}+x^{3}$	$N^{\circ} 5$	$7: N^{\circ} 1.2$
	7.3	$x^{40}+x^{34}+x^{18}+x^{10}+x$	-	$7: N^{\circ} 12.1$
	7.4	$x^{48}+x^{40}+x^{10}+x^{9}+x^{3}$	-	$7: N^{\circ} 2.1$
	7.5	$x^{33}+x^{9}+x^{6}+x^{5}+x^{3}$	-	$7: N^{\circ} 11.1$
	7.6	$x^{40}+x^{36}+x^{34}+x^{24}+x^{3}$	-	$7: N^{\circ} 10.1$
	7.7	$x^{24}+x^{10}+x^{9}+x^{6}+x^{3}$	-	$7: N^{\circ} 2.2$
	7.8	$x^{65}+x^{36}+x^{20}+x^{17}+x^{3}$	-	$7: N^{\circ} 14.1$
	7.9	$x^{40}+x^{33}+x^{17}+x^{5}+x^{3}$	$-N^{\circ} 8.1$	
	7.10	$x^{36}+x^{33}+x^{18}+x^{9}+x^{5}$	-	$7: N^{\circ} 10.2$
8	8.1	$x^{36}+x^{33}+x^{9}+x^{6}+x^{3}$	-	Table $9: N^{\circ} 1.4$
	8.2	$x^{72}+x^{66}+x^{12}+x^{6}+x^{3}$	$N^{\circ} 5$	$9: N^{\circ} 1.3$
	8.3	$x^{130}+x^{66}+x^{40}+x^{12}+x^{3}$	-	$9: N^{\circ} 6.1$
	8.4	$x^{66}+x^{40}+x^{18}+x^{5}+x^{3}$	-	$9: N^{\circ} 5.1$
9	-		-	-
10	-		-	-
	11.1	$x^{12}+x^{10}+x^{9}+x^{5}+x^{3}$	-	-
	11.2	$x^{258}+x^{257}+x^{18}+x^{17}+x^{3}$	-	-
11	11.3	$x^{96}+x^{66}+x^{34}+x^{33}+x^{3}$	-	-
	11.4	$x^{80}+x^{68}+x^{65}+x^{17}+x^{5}$	-	-
	11.5	$x^{260}+x^{257}+x^{36}+x^{33}+x^{5}$	-	-

Table 4: Classification of Quadratic APN Hexanomial (CCZ-inequivalent with infinite monomial families) in Small Dimensions with Coefficients as 1

n	N°	Functions	Families from Tables 5	Relation to [6]
6	-	-	-	-
7	7.1	$x^{34}+x^{33}+x^{12}+x^{6}+x^{5}+x^{3}$	-	Table $7: N^{\circ} 14.2$
	7.2	$x^{40}+x^{24}+x^{20}+x^{9}+x^{5}+x^{3}$	-	$7: N^{\circ} 14.1$
	7.3	$x^{33}+x^{24}+x^{20}+x^{18}+x^{12}+x^{3}$	-	$7: N^{\circ} 12.1$
	7.4	$x^{24}+x^{17}+x^{12}+x^{10}+x^{6}+x^{3}$	-	$7: N^{\circ} 2.1$
	7.5	$x^{40}+x^{34}+x^{18}+x^{17}+x^{5}+x^{3}$	$N^{\circ} 5$	$7: N^{\circ} 1.2$
	7.6	$x^{48}+x^{40}+x^{18}+x^{10}+x^{5}+x^{3}$	-	$7: N^{\circ} 11.1$
	7.7	$x^{40}+x^{12}+x^{10}+x^{9}+x^{5}+x^{3}$	-	$7: N^{\circ} 2.2$
	7.8	$x^{34}+x^{24}+x^{10}+x^{9}+x^{6}+x^{3}$	-	$7: N^{\circ} 9.1$
	7.9	$x^{34}+x^{33}+x^{20}+x^{17}+x^{10}+x^{3}$	-	$7: N^{\circ} 13.1$
	7.10	$x^{36}+x^{33}+x^{24}+x^{9}+x^{6}+x^{3}$	-	$7: N^{\circ} 10.1$
	7.11	$x^{40}+x^{36}+x^{20}+x^{10}+x^{5}+x^{3}$	-	$7: N^{\circ} 10.2$
	7.12	$x^{36}+x^{34}+x^{20}+x^{10}+x^{9}+x^{3}$	-	$7: N^{\circ} 8.1$
8	8.1	$x^{68}+x^{34}+x^{17}+x^{12}+x^{9}+x^{3}$	-	Table $9: N^{\circ} 5.1$
	8.2	$x^{72}+x^{40}+x^{34}+x^{20}+x^{12}+x^{3}$	-	$9: N^{\circ} 6.1$
	8.3	$x^{72}+x^{66}+x^{34}+x^{18}+x^{10}+x^{5}$	$N^{\circ} 5$	$9: N^{\circ} 4.1$
9	-	-	-	-
10	-	-	-	-
11	-	-	-	-

Table 5: Known classes of quadratic APN polynomials CCZ-inequivalent to APN monomials on $\mathbb{F}_{2^{n}}\left(u\right.$ is primitive in $\left.\mathbb{F}_{2^{n}}^{*}\right)$

No.	Functions	Conditions
$\begin{gathered} 1-2 \\ {[3]} \end{gathered}$	$x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}$	$\begin{gathered} n=p k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ p \in\{3,4\}, i=s k \bmod p, m=p-i \\ n \geq 12 \end{gathered}$
$\begin{gathered} 3 \\ {[2]} \end{gathered}$	$x^{2^{2 i}+2^{i}}+b x^{q+1}+c x^{q\left(2^{2 i}+2^{i}\right)}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1, \\ \operatorname{gcd}\left(2^{i}+1, q+1\right) \neq 1, c b^{q}+b \neq 0, \\ c \notin\left\{\lambda^{\left(2^{i}+1\right)(q-1)}, \lambda \in \mathbb{F}_{2^{n}}\right\}, c^{q+1}=1 \end{gathered}$
$\begin{gathered} 4 \\ {[2]} \end{gathered}$	$\begin{gathered} x\left(x^{2^{i}}+x^{q}+c x^{2^{i} q}\right) \\ +x^{2^{i}}\left(c^{q} x^{q}+s x^{2^{i} q}\right)+x^{\left(2^{i}+1\right) q} \end{gathered}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1, \\ c \in \mathbb{F}_{2^{n}}, s \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{q}, \\ X^{2^{i}+1}+c X^{2^{i}}+c^{q} X+1 \end{gathered}$ is irreducible over $\mathbb{F}_{2} n$
$\begin{gathered} 5 \\ {[4,5]} \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}\left(a^{3} x^{9}\right)$	$a \neq 0$
$\begin{gathered} 6 \\ {[5]} \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$
$\begin{gathered} \hline 7 \\ {[5]} \end{gathered}$	$x^{3}+a^{-1} \operatorname{tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$
$\begin{gathered} 8-10 \\ {[1]} \end{gathered}$	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}}+ \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \end{gathered}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ v, w \in \mathbb{F}_{2^{k}}, v w \neq 1, \\ 3 \mid(k+s) \end{gathered}$
$\begin{aligned} & 11 \\ & {[7]} \end{aligned}$	$\begin{gathered} \left(x+x^{2^{m}}\right)^{2^{k}+1}+ \\ u^{\left(2^{n}-1\right) /\left(2^{m}-1\right)}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{k}+1\right) 2^{i}}+ \\ u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right) \\ \hline \end{gathered}$	$\begin{gathered} m \geq 2,2 \mid m, n=2 m \\ \operatorname{gcd}(k, m)=1, i \text { is even } \end{gathered}$

References

[1] Carl Bracken, Eimear Byrne, Nadya Markin, and Gary Mcguire. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications, 14(3):703-714, 2008.
[2] Lilya Budaghyan and Claude Carlet. Classes of quadratic apn trinomials and hexanomials and related structures. IEEE Transactions on Information Theory, 54(5):2354-2357, 2008.
[3] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two classes of quadratic apn binomials inequivalent to power functions. IEEE Transactions on Information Theory, 54(9):4218-4229, 2008.
[4] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Constructing new apn functions from known ones. Finite Fields and Their Applications, 15(2):150-159, 2009.
[5] Lilya Budaghyan, Claude Carlet, and Gregor Leander. On a construction of quadratic apn functions. In Information Theory Workshop, 2009. ITW 2009. IEEE, pages 374-378. IEEE, 2009.
[6] Yves Edel and Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Adv. in Math. of Comm., 3(1):59-81, 2009.
[7] Yue Zhou and Alexander Pott. A new family of semifields with 2 parameters. Advances in Mathematics, 234:43-60, 2013.

